มัลติมิเตอร์แบบทำด้วยตัวเอง 830 ซ่อม

รายละเอียด: มัลติมิเตอร์ที่ต้องทำด้วยตัวเอง 830 ซ่อมแซมจากผู้เชี่ยวชาญจริงสำหรับเว็บไซต์ my.housecope.com

ฉันมองเห็นว่าไม่มีขั้วใดขั้วหนึ่ง เห็นได้ชัดว่าแบตเตอรี่ถูกถอดออกโดยไม่สนใจสุขภาพของบอร์ด ฟิวส์ไม่เสียหาย ตัวต้านทานเป็นปกติ - ดังนั้นเพื่อตรวจสอบว่าฉันตั้งตำแหน่งของโวลต์มิเตอร์ ฉันเชื่อมต่อโพรบ - หน้าจอแสดง 0.00 โอห์มมิเตอร์ก็เช่นกัน แอมมิเตอร์ ฯลฯ ฉันตัดสินใจถอนค่าธรรมเนียม และนี่คือ:

ฉันพบรอยไหม้ใกล้กับขั้วแบตเตอรี่ มันเกิดขึ้นที่แทร็กเปิดอยู่ แต่ฟิวส์ไม่เสียหาย

ฉันเชื่อมต่อมันอย่างดีที่สุดเท่าที่จะทำได้และเริ่มประกอบ ฉันต้องการให้ความสนใจเป็นพิเศษกับคนรักการซ่อมบ้านที่ไม่มีประสบการณ์บนตลับลูกปืนเหล่านี้ ซึ่งอาจสูญหายได้ระหว่างการถอดประกอบอย่างรวดเร็ว และหากไม่มีพวกมัน คุณจะไม่เห็นสวิตช์ที่ชัดเจน

สะสม-ผลงาน. มีความปิติมากมาย เปิดครั้งที่สองและไม่มีขอบเขตให้แปลกใจ

เป็นผลให้ผู้ทดสอบ + 2 คนใน 25 นาทีเมื่อรวบรวมทั้งสองแล้วตรวจสอบการใช้งาน - พวกเขาทำงานเหมือนใหม่!

ทางขวามือคือผู้ทดสอบของฉัน และถัดจากนั้นคือผู้ทดสอบสองคน - ตอนนี้เป็นของฉันด้วย :) ยังคงต้องหาสาเหตุว่าทำไมฉันถึงต้องการ 3 ตัวในตอนนี้ แต่นั่นเป็นอีกเรื่องหนึ่ง ฉันหวังว่าทุกคนจะใส่ใจกับเทคนิคใด ๆ ก่อนที่จะยุติเพราะการซ่อมแซมมักจะประกอบด้วยการดำเนินการที่ง่ายที่สุดในการกู้คืนผู้ติดต่อ

รูปภาพ - มัลติมิเตอร์ที่ต้องทำด้วยตัวเอง 830 การซ่อมแซม

เป็นไปไม่ได้ที่จะจินตนาการถึงเดสก์ท็อปของช่างซ่อมที่ไม่มีเครื่องมัลติมิเตอร์แบบดิจิตอลราคาไม่แพง

บทความนี้จะกล่าวถึงอุปกรณ์ของมัลติมิเตอร์แบบดิจิตอลรุ่น 830 วงจร รวมถึงการทำงานผิดปกติที่พบบ่อยที่สุดและวิธีแก้ไข

ปัจจุบันมีการผลิตเครื่องมือวัดดิจิทัลจำนวนมากที่มีระดับความซับซ้อน ความน่าเชื่อถือ และคุณภาพที่แตกต่างกันออกไป พื้นฐานของมัลติมิเตอร์แบบดิจิตอลสมัยใหม่ทั้งหมดคือตัวแปลงแรงดันไฟฟ้าแบบแอนะล็อกเป็นดิจิทัล (ADC) ในตัว ADC ตัวแรกๆ ที่เหมาะสำหรับการสร้างเครื่องมือวัดแบบพกพาราคาไม่แพง คือคอนเวอร์เตอร์ที่ใช้ไมโครเซอร์กิต ICL7106 ที่ผลิตโดย MAXIM ด้วยเหตุนี้ ดิจิตอลมัลติมิเตอร์รุ่น 830 ซีรีส์ราคาประหยัดที่ประสบความสำเร็จหลายรุ่นจึงได้รับการพัฒนา เช่น M830B, M830, M832, M838 แทนที่จะเป็นตัวอักษร M DT สามารถยืนได้ ปัจจุบันอุปกรณ์ชุดนี้เป็นอุปกรณ์ที่พบได้บ่อยและซ้ำที่สุดในโลก คุณสมบัติพื้นฐาน: การวัดแรงดันไฟตรงและไฟฟ้ากระแสสลับสูงสุด 1,000 V (ความต้านทานอินพุต 1 MΩ), การวัดกระแสตรงสูงสุด 10 A, การวัดความต้านทานสูงสุด 2 MΩ, การทดสอบไดโอดและทรานซิสเตอร์ นอกจากนี้ ในบางรุ่นยังมีโหมดของการเชื่อมต่อเสียงที่ต่อเนื่อง การวัดอุณหภูมิแบบมีและไม่มีเทอร์โมคัปเปิล การสร้างคดเคี้ยวด้วยความถี่ 50 ... 60 Hz หรือ 1 kHz ผู้ผลิตหลักของชุดมัลติมิเตอร์นี้คือ Precision Mastech Enterprises (ฮ่องกง)

วิดีโอ (คลิกเพื่อเล่น)

พื้นฐานของมัลติมิเตอร์คือ ADC IC1 ประเภท 7106 (อะนาล็อกในประเทศที่ใกล้ที่สุดคือไมโครเซอร์กิต 572PV5) แผนภาพบล็อกของมันแสดงในรูปที่ 1 และพินสำหรับการดำเนินการในแพ็คเกจ DIP-40 แสดงในรูปที่ 2. เคอร์เนล 7106 อาจมีคำนำหน้าแตกต่างกันไปขึ้นอยู่กับผู้ผลิต: ICL7106, TC7106 เป็นต้น เมื่อเร็ว ๆ นี้มีการใช้ไมโครเซอร์กิตที่ไม่ได้บรรจุหีบห่อ (ชิป DIE) มากขึ้นเรื่อย ๆ ซึ่งคริสตัลจะถูกบัดกรีโดยตรงไปยังแผงวงจรพิมพ์

พิจารณาวงจรของมัลติมิเตอร์ M832 จาก Mastech (รูปที่ 3) พิน 1 ของ IC1 คือแหล่งจ่ายไฟแบตเตอรี่บวก 9V, พิน 26 เป็นค่าลบ ภายใน ADC มีแหล่งจ่ายแรงดันไฟฟ้าที่เสถียร 3 V อินพุตเชื่อมต่อกับพิน 1 ของ IC1 และเอาต์พุตเชื่อมต่อกับพิน 32 ขา 32 เชื่อมต่อกับพินทั่วไปของมัลติมิเตอร์และเชื่อมต่อแบบไฟฟ้ากับอินพุต COM ของเครื่องมือ ความแตกต่างของแรงดันไฟฟ้าระหว่างพิน 1 และ 32 อยู่ที่ประมาณ 3 V สำหรับแรงดันไฟฟ้าที่หลากหลาย - จากค่าเล็กน้อยถึง 6.5 Vแรงดันไฟฟ้าที่เสถียรนี้จ่ายให้กับตัวแบ่งที่ปรับได้ R11, VR1, R13 และจากเอาต์พุตไปยังอินพุตของ microcircuit 36 ​​​​(ในโหมดการวัดกระแสและแรงดัน) ตัวแบ่งกำหนดศักยภาพ U ที่พิน 36 เท่ากับ 100 mV ตัวต้านทาน R12, R25 และ R26 ทำหน้าที่ป้องกัน ทรานซิสเตอร์ Q102 และตัวต้านทาน R109, R110 และ R111 มีหน้าที่ในการบ่งชี้แบตเตอรี่ต่ำ ตัวเก็บประจุ C7, C8 และตัวต้านทาน R19, R20 มีหน้าที่ในการแสดงจุดทศนิยมของจอแสดงผล

ช่วงแรงดันไฟฟ้าอินพุตที่ใช้งาน Umax ขึ้นอยู่กับระดับของแรงดันอ้างอิงที่ปรับได้โดยตรงที่พิน 36 และ 35 และ is

ความเสถียรและความแม่นยำของการอ่านจอแสดงผลขึ้นอยู่กับความเสถียรของแรงดันอ้างอิงนี้

การอ่านค่า N ขึ้นอยู่กับแรงดันไฟฟ้าขาเข้า U และแสดงเป็นตัวเลข

แผนภาพแบบง่ายของมัลติมิเตอร์ในโหมดการวัดแรงดันไฟฟ้าแสดงในรูปที่ 4.

เมื่อวัดแรงดันไฟฟ้ากระแสตรง สัญญาณอินพุตจะถูกนำไปใช้กับ R1…R6 จากเอาต์พุตซึ่งผ่านสวิตช์ [ตามแบบแผน 1-8/1…1-8/2) จะถูกป้อนไปยังตัวต้านทานป้องกัน R17 . ตัวต้านทานนี้ยังสร้างตัวกรองความถี่ต่ำผ่านร่วมกับตัวเก็บประจุ C3 เมื่อทำการวัดแรงดันไฟ AC ถัดไป สัญญาณจะถูกส่งไปยังอินพุตโดยตรงของชิป ADC พิน 31 ศักยภาพของเอาต์พุตทั่วไปที่สร้างโดยแหล่งจ่ายแรงดันไฟฟ้าที่เสถียร 3 V, พิน 32 จะถูกนำไปใช้กับอินพุตผกผันของไมโครเซอร์กิต

เมื่อวัดแรงดันไฟฟ้ากระแสสลับ จะแก้ไขด้วยวงจรเรียงกระแสครึ่งคลื่นบนไดโอด D1 ตัวต้านทาน R1 และ R2 ถูกเลือกในลักษณะที่เมื่อทำการวัดแรงดันไซน์ อุปกรณ์จะแสดงค่าที่ถูกต้อง การป้องกัน ADC มีให้โดย R1…R6 ตัวแบ่งและตัวต้านทาน R17

แผนภาพแบบง่ายของมัลติมิเตอร์ในโหมดการวัดปัจจุบันแสดงในรูปที่ 5.

ในโหมดการวัดกระแสตรง ตัวหลังจะไหลผ่านตัวต้านทาน R0, R8, R7 และ R6 ซึ่งจะเปลี่ยนไปตามช่วงการวัด แรงดันไฟตกคร่อมตัวต้านทานเหล่านี้ผ่าน R17 จะถูกป้อนเข้ากับอินพุตของ ADC และผลลัพธ์จะแสดงขึ้น การป้องกัน ADC มีให้โดยไดโอด D2, D3 (อาจไม่ได้ติดตั้งในบางรุ่น) และฟิวส์ F.

แผนภาพแบบง่ายของมัลติมิเตอร์ในโหมดการวัดความต้านทานแสดงในรูปที่ 6. ในโหมดการวัดความต้านทาน ใช้การพึ่งพาที่แสดงโดยสูตร (2)

แผนภาพแสดงให้เห็นว่ากระแสเดียวกันจากแหล่งจ่ายแรงดัน +U ไหลผ่านตัวต้านทานอ้างอิงและตัวต้านทานที่วัดได้ R "(กระแสอินพุต 35, 36, 30 และ 31 มีน้อยมาก) และอัตราส่วนของ U และ U เท่ากับอัตราส่วน ของความต้านทานของตัวต้านทาน R" และ R ^ R1..R6 ใช้เป็นตัวต้านทานอ้างอิง R10 และ R103 ใช้เป็นตัวต้านทานการตั้งค่ากระแส การป้องกัน ADC มีให้โดยเทอร์มิสเตอร์ R18 (บางรุ่นราคาถูกใช้ตัวต้านทาน 1.2 kΩ ปกติ), Q1 ในโหมดซีเนอร์ไดโอด (ไม่ได้ติดตั้งเสมอ) และตัวต้านทาน R35, R16 และ R17 ที่อินพุต 36, 35 และ 31 ของ ADC

โหมดความต่อเนื่องวงจรความต่อเนื่องใช้ IC2 (LM358) ซึ่งมีแอมพลิฟายเออร์การทำงานสองตัว เครื่องกำเนิดเสียงประกอบอยู่บนแอมพลิฟายเออร์ตัวหนึ่ง ตัวเปรียบเทียบอีกตัวหนึ่ง เมื่อแรงดันไฟฟ้าที่อินพุตของตัวเปรียบเทียบ (พิน 6) น้อยกว่าเกณฑ์ แรงดันไฟต่ำจะถูกตั้งค่าที่เอาต์พุต (พิน 7) ซึ่งจะเปิดคีย์บนทรานซิสเตอร์ Q101 ส่งผลให้เกิดสัญญาณที่ได้ยิน เกณฑ์กำหนดโดยตัวแบ่ง R103, R104 การป้องกันมีให้โดยตัวต้านทาน R106 ที่อินพุตของตัวเปรียบเทียบ

ความผิดปกติทั้งหมดสามารถแบ่งออกเป็นข้อบกพร่องของโรงงาน (และสิ่งนี้เกิดขึ้น) และความเสียหายที่เกิดจากการกระทำที่ผิดพลาดของผู้ปฏิบัติงาน

รูปภาพ - มัลติมิเตอร์ที่ต้องทำด้วยตัวเอง 830 การซ่อมแซม

เนื่องจากมัลติมิเตอร์ใช้การยึดแน่น การลัดวงจรขององค์ประกอบ การบัดกรีที่ไม่ดี และการแตกหักของตัวนำองค์ประกอบ โดยเฉพาะอย่างยิ่งที่ตั้งอยู่ตามขอบของบอร์ด การซ่อมแซมอุปกรณ์ที่ผิดพลาดควรเริ่มต้นด้วยการตรวจสอบแผงวงจรพิมพ์ด้วยสายตา ข้อบกพร่องจากโรงงานที่พบบ่อยที่สุดของมัลติมิเตอร์ M832 แสดงอยู่ในตาราง

สามารถตรวจสอบความสมบูรณ์ของจอ LCD ได้โดยใช้แหล่งจ่ายแรงดันไฟฟ้ากระแสสลับที่มีความถี่ 50.60 Hz และแอมพลิจูดหลายโวลต์คุณสามารถใช้มัลติมิเตอร์ M832 ซึ่งมีโหมดการสร้างแบบคดเคี้ยวได้ เนื่องจากเป็นแหล่งจ่ายแรงดันไฟฟ้ากระแสสลับ ในการทดสอบจอแสดงผล ให้วางบนพื้นผิวเรียบโดยยกหน้าจอขึ้น ต่อโพรบมัลติมิเตอร์ M832 หนึ่งตัวกับขั้วต่อทั่วไปของไฟแสดงสถานะ (แถวล่าง ขั้วต่อด้านซ้าย) และใช้โพรบมัลติมิเตอร์อีกตัวสลับกับขั้วต่อจอแสดงผลที่เหลือ หากคุณสามารถจุดระเบิดทุกส่วนของจอแสดงผลได้แสดงว่าใช้งานได้

ความผิดปกติข้างต้นอาจปรากฏขึ้นระหว่างการใช้งาน ควรสังเกตว่าในโหมดการวัดแรงดัน DC อุปกรณ์ไม่ค่อยล้มเหลวเพราะ ได้รับการปกป้องอย่างดีจากการโอเวอร์โหลดอินพุต ปัญหาหลักเกิดขึ้นเมื่อวัดกระแสหรือความต้านทาน

การซ่อมแซมอุปกรณ์ที่ผิดพลาดควรเริ่มต้นด้วยการตรวจสอบแรงดันไฟของแหล่งจ่ายและความสามารถในการทำงานของ ADC: แรงดันไฟเสถียรคือ 3 V และไม่มีการพังทลายระหว่างเอาต์พุตกำลังและเอาต์พุตทั่วไปของ ADC

ในโหมดการวัดปัจจุบันเมื่อใช้อินพุต V, Q และ mA แม้ว่าจะมีฟิวส์อยู่ก็ตาม อาจมีบางกรณีที่ฟิวส์ไหม้ช้ากว่าฟิวส์ไดโอด D2 หรือ D3 มีเวลาที่จะเจาะทะลุ หากมีการติดตั้งฟิวส์ในมัลติมิเตอร์ที่ไม่ตรงตามข้อกำหนดของคำแนะนำ ในกรณีนี้ความต้านทาน R5 ... R8 อาจไหม้และอาจไม่ปรากฏให้เห็นบนความต้านทาน ในกรณีแรก เมื่อมีเพียงไดโอดเท่านั้นที่ทะลุผ่าน ข้อบกพร่องจะปรากฏเฉพาะในโหมดการวัดปัจจุบันเท่านั้น: กระแสจะไหลผ่านอุปกรณ์ แต่หน้าจอจะแสดงค่าศูนย์ ในกรณีที่ตัวต้านทาน R5 หรือ R6 เกิดความเหนื่อยหน่ายในโหมดการวัดแรงดันไฟ อุปกรณ์จะประเมินค่าที่อ่านค่าสูงไปหรือแสดงการโอเวอร์โหลด เมื่อตัวต้านทานตัวใดตัวหนึ่งหรือทั้งสองตัวถูกเผาไหม้จนหมด อุปกรณ์จะไม่ถูกรีเซ็ตในโหมดการวัดแรงดันไฟฟ้า แต่เมื่อปิดอินพุต จอแสดงผลจะถูกตั้งค่าเป็นศูนย์ เมื่อตัวต้านทาน R7 หรือ R8 หมดในช่วงการวัดปัจจุบัน 20 mA และ 200 mA อุปกรณ์จะแสดงโอเวอร์โหลดและในช่วง 10 A - มีเพียงศูนย์เท่านั้น

ในโหมดการวัดความต้านทาน ความผิดปกติมักเกิดขึ้นในช่วง 200 โอห์ม และ 2000 โอห์ม ในกรณีนี้ เมื่อใช้แรงดันไฟฟ้ากับอินพุต ตัวต้านทาน R5, R6, R10, R18, ทรานซิสเตอร์ Q1 จะไหม้และตัวเก็บประจุ C6 จะขาด หากทรานซิสเตอร์ Q1 แตกอย่างสมบูรณ์ เมื่อวัดความต้านทาน อุปกรณ์จะแสดงค่าศูนย์ ด้วยการสลายตัวที่ไม่สมบูรณ์ของทรานซิสเตอร์ มัลติมิเตอร์ที่มีโพรบแบบเปิดจะแสดงความต้านทานของทรานซิสเตอร์นี้ ในโหมดการวัดแรงดันและกระแส ทรานซิสเตอร์จะลัดวงจรโดยสวิตช์ และไม่ส่งผลต่อการอ่านมัลติมิเตอร์ เมื่อตัวเก็บประจุ C6 เสีย มัลติมิเตอร์จะไม่วัดแรงดันไฟฟ้าในช่วง 20 V, 200 V และ 1000 V หรือประเมินค่าที่อ่านได้ในช่วงเหล่านี้ต่ำเกินไป

หากไม่มีข้อบ่งชี้บนจอแสดงผลเมื่อมีกระแสไฟไปยัง ADC หรือหากองค์ประกอบวงจรจำนวนมากถูกเผาไหม้ด้วยสายตา มีความเป็นไปได้สูงที่จะเกิดความเสียหายต่อ ADC ความสามารถในการซ่อมบำรุงของ ADC ได้รับการตรวจสอบโดยการตรวจสอบแรงดันไฟฟ้าของแหล่งจ่ายแรงดันไฟฟ้าที่เสถียรที่ 3 V ในทางปฏิบัติ ADC จะเผาไหม้ออกก็ต่อเมื่อไฟฟ้าแรงสูงถูกนำไปใช้กับอินพุต ซึ่งสูงกว่า 220 V มาก บ่อยครั้งมากที่รอยแตกปรากฏขึ้น สารประกอบ ADC แบบไร้กรอบการใช้กระแสไฟของไมโครเซอร์กิตเพิ่มขึ้นซึ่งนำไปสู่ความร้อนที่เห็นได้ชัดเจน .

เมื่อแรงดันไฟฟ้าสูงมากถูกนำไปใช้กับอินพุตของอุปกรณ์ในโหมดการวัดแรงดันไฟฟ้า อาจเกิดการพังทลายตามองค์ประกอบ (ตัวต้านทาน) และตามแผงวงจรพิมพ์ ในกรณีของโหมดการวัดแรงดันไฟฟ้า วงจรได้รับการป้องกันโดย ตัวแบ่งบนแนวต้าน R1.R6

สำหรับรุ่น DT ราคาถูก ชิ้นส่วนที่มีความยาวสามารถลัดไปยังหน้าจอที่อยู่ด้านหลังของอุปกรณ์ ซึ่งจะขัดขวางการทำงานของวงจร Mastech ไม่มีข้อบกพร่องดังกล่าว

แหล่งจ่ายแรงดันไฟฟ้าที่เสถียร 3 V ใน ADC สำหรับรุ่นจีนราคาถูกสามารถให้แรงดันไฟฟ้า 2.6.3.4 V ได้จริงและสำหรับอุปกรณ์บางอย่างจะหยุดทำงานที่แรงดันแบตเตอรี่ 8.5 V

รุ่น DT ใช้ ADC ที่มีคุณภาพต่ำและมีความละเอียดอ่อนมากต่อค่าสตริงของตัวรวม C4 และ R14 ในมัลติมิเตอร์ Mastech ADC คุณภาพสูงทำให้สามารถใช้องค์ประกอบที่มีเรตติ้งใกล้เคียงกันได้

บ่อยครั้งในมัลติมิเตอร์ DT ที่มีโพรบเปิดในโหมดการวัดความต้านทาน อุปกรณ์เข้าใกล้ค่าโอเวอร์โหลด (“1” บนจอแสดงผล) เป็นเวลานานมากหรือไม่ได้ตั้งค่าเลย คุณสามารถ "รักษา" ชิป ADC คุณภาพต่ำได้โดยการลดค่าความต้านทาน R14 จาก 300 เป็น 100 kOhm

เมื่อวัดความต้านทานในส่วนบนของช่วง อุปกรณ์จะ "เติม" ค่าที่อ่านได้ ตัวอย่างเช่น เมื่อวัดความต้านทานที่มีความต้านทาน 19.8 kOhm จะแสดง 19.3 kOhm มันถูก "รักษา" โดยแทนที่ตัวเก็บประจุ C4 ด้วยตัวเก็บประจุ 0.22 ... 0.27 uF

เนื่องจากบริษัทจีนราคาถูกใช้ ADC แบบไร้กรอบคุณภาพต่ำ จึงมักมีบางกรณีของเอาต์พุตที่เสียหาย ในขณะที่การระบุสาเหตุของการทำงานผิดพลาดเป็นเรื่องยากมาก และสามารถแสดงออกมาในรูปแบบต่างๆ ได้ ขึ้นอยู่กับเอาต์พุตที่เสียหาย ตัวอย่างเช่น เอาต์พุตตัวบ่งชี้ตัวใดตัวหนึ่งไม่ติดสว่าง เนื่องจากมัลติมิเตอร์ใช้จอแสดงผลที่มีสัญญาณคงที่ เพื่อระบุสาเหตุของการทำงานผิดพลาด จึงจำเป็นต้องตรวจสอบแรงดันไฟฟ้าที่เอาต์พุตที่สอดคล้องกันของชิป ADC จึงควรมีค่าประมาณ 0.5 V เมื่อเทียบกับเอาต์พุตทั่วไป หากเป็นศูนย์แสดงว่า ADC มีข้อบกพร่อง

มีความผิดปกติที่เกี่ยวข้องกับหน้าสัมผัสคุณภาพต่ำบนสวิตช์บิสกิต อุปกรณ์จะทำงานเมื่อกดสวิตช์บิสกิตเท่านั้น บริษัทที่ผลิตมัลติมิเตอร์ราคาถูกมักจะปิดรางใต้สวิตช์บิสกิตด้วยจาระบี ซึ่งเป็นสาเหตุที่ทำให้ออกซิไดซ์ได้อย่างรวดเร็ว บ่อยครั้งที่เส้นทางสกปรกด้วยบางสิ่งบางอย่าง มีการซ่อมแซมดังนี้: แผงวงจรพิมพ์จะถูกลบออกจากเคสและแทร็กสวิตช์จะถูกเช็ดด้วยแอลกอฮอล์ จากนั้นใช้ปิโตรเลียมเจลลี่ทางเทคนิคบางๆ ทุกอย่างอุปกรณ์ได้รับการซ่อมแซม

ด้วยอุปกรณ์ในซีรีส์ DT บางครั้งอาจเกิดการวัดแรงดันไฟสลับด้วยเครื่องหมายลบ นี่แสดงว่า D1 ได้รับการติดตั้งอย่างไม่ถูกต้อง ซึ่งมักเกิดจากการทำเครื่องหมายที่ไม่ถูกต้องบนตัวไดโอด

มันเกิดขึ้นที่ผู้ผลิตมัลติมิเตอร์ราคาถูกใส่แอมพลิฟายเออร์คุณภาพต่ำในวงจรกำเนิดเสียงจากนั้นเมื่อเปิดอุปกรณ์เสียงกริ่งจะดังขึ้น ข้อบกพร่องนี้ถูกกำจัดโดยการบัดกรีตัวเก็บประจุด้วยไฟฟ้าด้วยค่าเล็กน้อย 5 ไมโครฟารัดขนานกับวงจรไฟฟ้า หากสิ่งนี้ไม่รับประกันการทำงานที่เสถียรของเครื่องกำเนิดเสียง ก็จำเป็นต้องเปลี่ยนแอมพลิฟายเออร์ในการดำเนินงานด้วย LM358P

มักจะมีความรำคาญเช่นการรั่วไหลของแบตเตอรี่ อิเล็กโทรไลต์หยดเล็กๆ สามารถเช็ดด้วยแอลกอฮอล์ได้ แต่ถ้ากระดานถูกน้ำท่วมอย่างหนัก ผลลัพธ์ที่ดีก็สามารถได้จากการซักด้วยน้ำร้อนและสบู่ซักผ้า หลังจากถอดตัวบ่งชี้และยกเลิกการขายเครื่องส่งเสียงดังเอี้ยแล้ว โดยใช้แปรง เช่น แปรงสีฟัน คุณต้องถูกระดานทั้งสองด้านอย่างระมัดระวังแล้วล้างออกด้วยน้ำประปาที่ไหลผ่าน ซักซ้ำ 2.3 ครั้ง บอร์ดจะแห้งและติดตั้งในกล่อง

ในอุปกรณ์ส่วนใหญ่ที่ผลิตเมื่อเร็วๆ นี้ จะใช้ ADC ที่ไม่ได้บรรจุหีบห่อ (ชิป DIE) คริสตัลถูกติดตั้งโดยตรงบนแผงวงจรพิมพ์และเติมด้วยเรซิน น่าเสียดายที่สิ่งนี้ลดความสามารถในการบำรุงรักษาอุปกรณ์ลงอย่างมากเพราะ เมื่อ ADC ล้มเหลวซึ่งเกิดขึ้นค่อนข้างบ่อยก็ยากที่จะเปลี่ยน อุปกรณ์ที่มี ADC ที่ไม่ได้บรรจุหีบห่อนั้นบางครั้งไวต่อแสงจ้า ตัวอย่างเช่น เมื่อทำงานใกล้กับโคมไฟตั้งโต๊ะ ข้อผิดพลาดในการวัดอาจเพิ่มขึ้น ความจริงก็คือตัวบ่งชี้และบอร์ดของอุปกรณ์มีความโปร่งใสและแสงที่ทะลุผ่านนั้นตกลงบนคริสตัล ADC ทำให้เกิดเอฟเฟกต์โฟโตอิเล็กทริก เพื่อขจัดข้อบกพร่องนี้ คุณต้องถอดบอร์ดออก และเมื่อถอดตัวบ่งชี้แล้ว ให้กาวตำแหน่งของคริสตัล ADC (สามารถมองเห็นได้ชัดเจนผ่านกระดาน) ด้วยกระดาษหนา

เมื่อซื้อมัลติมิเตอร์ DT คุณควรให้ความสนใจกับคุณภาพของกลไกของสวิตช์ อย่าลืมหมุนสวิตช์ของมัลติมิเตอร์หลาย ๆ ครั้งเพื่อให้แน่ใจว่าสวิตช์เกิดขึ้นอย่างชัดเจนและไม่มีการติดขัด: ไม่สามารถซ่อมแซมข้อบกพร่องของพลาสติกได้

เซอร์เกย์ โบบิน. "การซ่อมแซมอุปกรณ์อิเล็กทรอนิกส์" №1, 2003

รูปภาพ - มัลติมิเตอร์ที่ต้องทำด้วยตัวเอง 830 การซ่อมแซม

เช่นเดียวกับรายการอื่น ๆ มัลติมิเตอร์อาจล้มเหลวระหว่างการทำงานหรือมีข้อบกพร่องจากโรงงานที่ไม่มีใครสังเกตเห็นในระหว่างการผลิต ในการค้นหาวิธีการซ่อมแซมมัลติมิเตอร์ คุณควรเข้าใจธรรมชาติของความเสียหายเสียก่อน

ผู้เชี่ยวชาญแนะนำให้เริ่มค้นหาสาเหตุของการทำงานผิดพลาดด้วยการตรวจสอบแผงวงจรพิมพ์อย่างละเอียด เนื่องจากการลัดวงจรและการบัดกรีที่ไม่ดีอาจเกิดขึ้นได้ รวมถึงข้อบกพร่องในตัวนำขององค์ประกอบตามขอบของบอร์ด

ข้อบกพร่องจากโรงงานในอุปกรณ์เหล่านี้มักปรากฏบนจอแสดงผล มีได้ถึงสิบประเภท (ดูตาราง) ดังนั้นจึงเป็นการดีกว่าที่จะซ่อมแซมมัลติมิเตอร์แบบดิจิตอลโดยใช้คำแนะนำที่มาพร้อมกับอุปกรณ์

การพังทลายแบบเดียวกันอาจเกิดขึ้นหลังการดำเนินการ ความผิดปกติข้างต้นอาจปรากฏขึ้นระหว่างการใช้งาน อย่างไรก็ตาม หากอุปกรณ์ทำงานในโหมดการวัดแรงดันคงที่ อุปกรณ์จะไม่ค่อยแตกหัก

เหตุผลก็คือการป้องกันโอเวอร์โหลด นอกจากนี้ การซ่อมแซมอุปกรณ์ที่ผิดพลาดควรเริ่มต้นด้วยการตรวจสอบแรงดันไฟของแหล่งจ่ายและความสามารถในการทำงานของ ADC: แรงดันไฟเสถียรคือ 3 V และไม่มีการพังทลายระหว่างเอาต์พุตกำลังและเอาต์พุตทั่วไปของ ADC

ผู้ใช้ที่มีประสบการณ์และผู้เชี่ยวชาญได้กล่าวซ้ำแล้วซ้ำอีกว่าสาเหตุหนึ่งที่เป็นไปได้มากที่สุดของการพังบ่อยครั้งในอุปกรณ์คือการผลิตที่มีคุณภาพต่ำ กล่าวคือบัดกรีหน้าสัมผัสด้วยกรด เป็นผลให้หน้าสัมผัสถูกออกซิไดซ์อย่างง่าย

อย่างไรก็ตาม หากคุณไม่แน่ใจว่าการเสียประเภทใดที่ทำให้อุปกรณ์ไม่ทำงาน คุณควรติดต่อผู้เชี่ยวชาญเพื่อขอคำแนะนำหรือความช่วยเหลือ

ห้าม
รูปภาพ - มัลติมิเตอร์ที่ต้องทำด้วยตัวเอง 830 การซ่อมแซม


ข้อความ: 102

บอกค่าของตัวต้านทาน smd R5 ที่บวม ฉันดูโครงร่างสำหรับอุปกรณ์ดังกล่าวจำนวนองค์ประกอบไม่ตรงกัน หรือโยนลิงค์ไปยังวงจรของเขา (ไม่มีทรานซิสเตอร์ในตัวนี้เพื่อสลับจุดบนกระดานคะแนน) ตัวต้านทานอยู่ด้านล่างมุมซ้ายของขาของ microcircuit-drop หากจอแสดงผลอยู่ห่างจากฉันฉันจะพยายามโพสต์รูปถ่าย แต่มันไม่ได้ผลในครั้งแรก

dt-830b.JPG 41.25 KB ดาวน์โหลดแล้ว: 12554 ครั้ง

ภายใต้หมายเลขนี้อาจมีตราสินค้า MASTECH และ MASTER กึ่งแบรนด์รัสเซีย และงานหัตถกรรมจากขยะจีนทั้งหมดหลายร้อยชิ้น

คุณควรให้ภาพเต็ม - อย่างน้อยก็ชัดเจนว่าจะต้องทำอะไร ไม่งั้นขยะเกลื่อนไปหมด บิดดูเกียจคร้านเกินไป

ห้าม
รูปภาพ - มัลติมิเตอร์ที่ต้องทำด้วยตัวเอง 830 การซ่อมแซม


ข้อความ: 102

ห้าม
รูปภาพ - มัลติมิเตอร์ที่ต้องทำด้วยตัวเอง 830 การซ่อมแซม


ข้อความ: 102

ฉันดึงดูดความสนใจของคุณ มันคือ DT-830B ผ่านเส้นประ มี DT830B - สิ่งเหล่านี้เงอะงะในการติดตั้ง

ห้าม
รูปภาพ - มัลติมิเตอร์ที่ต้องทำด้วยตัวเอง 830 การซ่อมแซม


ข้อความ: 102

นี่คือการจัดอันดับของชิ้นส่วนในมัลติมิเตอร์นี้ ทันใดนั้นบางคนก็จะมองหาชิ้นส่วนที่ถูกไฟไหม้จากมัน

DT-830B.rar 66.92 KB ดาวน์โหลดแล้ว: 16053 ครั้ง

D-830B_4c.jpg 92.57 KB ดาวน์โหลดแล้ว: 12596 ครั้ง
DT-830B_5.2.jpg 82.95 KB ดาวน์โหลดแล้ว: 12030 ครั้ง

คำเตือน: 1
รูปภาพ - มัลติมิเตอร์แบบ Do-it-yourself 830 การซ่อมแซม


กระทู้: 483

ขอขอบคุณ Denwe (12-02-2011) สำหรับโครงการ DT-830B_5.2.jpg
วันก่อนพวกเขานำ DT-830B ไปซ่อม การจ่ายเงินก็เหมือนกันหมด ฉันหยุดวัดความต้านทาน - ข้อผิดพลาดทั่วไปคือการวัดแรงดันในโหมดการวัดความต้านทาน โหมดที่เหลือใช้งานได้ ตัวต้านทาน smd ในพื้นที่สวิตช์ถูกไฟไหม้ รูปแสดง 1.5 k. เปลี่ยนแล้วใช้งานได้เลย รูปภาพ - มัลติมิเตอร์แบบ Do-it-yourself 830 การซ่อมแซม

ไม่กี่ปีที่ฉันซ่อม DT890B ของฉัน ก่อนหน้านั้นคนที่ไม่ทำงานนอนอยู่เป็นเวลานาน มีการหล่นบนกระดาน แต่ยังแผ่นสัมผัสภายใต้ ICL7106 ฉันซื้อ DIP-40 ปกติในกล่องพลาสติกวางไว้ "คุกเข่า" มีพื้นที่เพียงพอภายใต้ตัวบ่งชี้ (ก่อนหน้านี้ฉันเลือกหยด) คุณเพียงแค่ต้องเพิ่มทรานซิสเตอร์และตัวต้านทาน 3 ตัวเพื่อระบุแบตเตอรี่ (เช่นใน M830) การดำเนินการนี้จะเสร็จสิ้นภายในและแสดงในแทร็กแยกต่างหาก

ฉันเปิด DT-830B ที่ใช้งานได้ (100% เหมือนกับ Andrey74 นำเสนอในหน้านี้ในวันที่ 18-11-2010 21:12 น. เพื่อวัด "blot" ของประเภท ICL7106 ฉันกำลังแบ่งปันผลการวิจัยของฉัน เพราะฉันไม่เคยเห็นอะไรแบบนี้ที่ไหนมาก่อน พวกเขาจะช่วยให้คุณเข้าใจความอยู่รอดของโปรเซสเซอร์ ฉันหวังว่าไม่เพียงแต่ในเครื่องทดสอบรุ่นใดรุ่นหนึ่งเท่านั้น ดังนั้น การวัดที่เกี่ยวข้อง: โวลต์มิเตอร์แบบดิจิตอล V7-38, ตัวทดสอบตัวชี้ Ts 4380 , ออสซิลโลสโคป S1-94.สวิตช์ตั้งค่าไว้ที่ 200 โอห์ม การวัดเทียบกับค่าลบของแหล่งพลังงาน หวังว่าคุณจะเพิ่มและความแตกต่างในข้อมูลในเครื่องทดสอบรุ่นอื่นๆ ตามไมโครเซอร์กิตนี้ โชคดี

ภาพจากบนลงล่าง: ขาที่ 2-26, ขาที่ 30, ขาที่ 33,34, ขาที่ 35, ขาที่ 39, ขาที่ 41

DT-830B.jpg 63.83 KB ดาวน์โหลดแล้ว: 1500 ครั้ง

มัลติมิเตอร์ DT-830C แสดงแรงดันไฟฟ้าไม่ถูกต้อง
แสดงให้เห็นประมาณครึ่งหนึ่งของของจริง
ในตัวอย่างของค่าคงที่: แบตเตอรี่ 1.32 V แต่แสดงเป็น 0.58 V
ในตัวอย่างของตัวแปร: ในเครือข่าย 220 V แต่แสดง 99 V
วัดความต้านทานได้อย่างถูกต้อง

อาการเพิ่มเติม:
- บางครั้งได้รับศูนย์อย่างช้าๆ
- บนความต้านทานบางส่วนของกระดาน สีจะเปลี่ยนเป็นสีเหลืองราวกับว่าถูกทำให้ร้อน (เช่น R6, 10, 12,13,14)
ตัวเก็บประจุ C3 แสดง 1210 บนหน้าปัด เป็นเรื่องปกติหรือไม่?
รูปภาพ - มัลติมิเตอร์แบบ Do-it-yourself 830 การซ่อมแซม

รูปภาพ - มัลติมิเตอร์แบบ Do-it-yourself 830 การซ่อมแซม

รูปภาพ - มัลติมิเตอร์แบบ Do-it-yourself 830 การซ่อมแซมรูปภาพ - มัลติมิเตอร์แบบ Do-it-yourself 830 การซ่อมแซม

  • รูปภาพ - มัลติมิเตอร์แบบ Do-it-yourself 830 การซ่อมแซม
  • รูปภาพ - มัลติมิเตอร์แบบ Do-it-yourself 830 การซ่อมแซม
  • รูปภาพ - มัลติมิเตอร์แบบ Do-it-yourself 830 การซ่อมแซม

รูปภาพ - มัลติมิเตอร์แบบ Do-it-yourself 830 การซ่อมแซม

ลงทะเบียนสำหรับบัญชี มันง่าย!

  • master_tv
  • รูปภาพ - มัลติมิเตอร์แบบ Do-it-yourself 830 การซ่อมแซม
  • ออฟไลน์
  • พิธีกร
  • รูปภาพ - มัลติมิเตอร์แบบ Do-it-yourself 830 การซ่อมแซม
  • ช่างซ่อมอิเล็คทรอนิคส์
  • กระทู้: 3613
  • ขอบคุณที่ได้รับ: 246
  • ชื่อเสียง: -4

เป็นไปไม่ได้ที่จะจินตนาการถึงเดสก์ท็อปของช่างซ่อมที่ไม่มีเครื่องมัลติมิเตอร์แบบดิจิตอลราคาไม่แพง บทความนี้กล่าวถึงการออกแบบมัลติมิเตอร์แบบดิจิตอล 830 ซีรีส์ ความผิดปกติที่พบบ่อยที่สุด และวิธีแก้ไข

ปัจจุบันมีการผลิตเครื่องมือวัดดิจิทัลจำนวนมากที่มีระดับความซับซ้อน ความน่าเชื่อถือ และคุณภาพที่แตกต่างกันออกไป พื้นฐานของมัลติมิเตอร์แบบดิจิตอลสมัยใหม่ทั้งหมดคือตัวแปลงแรงดันไฟฟ้าแบบแอนะล็อกเป็นดิจิทัล (ADC) ในตัว ADC ตัวแรกๆ ที่เหมาะสำหรับการสร้างเครื่องมือวัดแบบพกพาราคาไม่แพง คือคอนเวอร์เตอร์ที่ใช้ไมโครเซอร์กิต ICL7106 ที่ผลิตโดย MAXIM ด้วยเหตุนี้ ดิจิตอลมัลติมิเตอร์รุ่น 830 ซีรีส์ราคาประหยัดที่ประสบความสำเร็จหลายรุ่นจึงได้รับการพัฒนา เช่น M830B, M830, M832, M838 แทนที่จะเป็นตัวอักษร M DT สามารถยืนได้ ปัจจุบันอุปกรณ์ชุดนี้เป็นอุปกรณ์ที่พบได้บ่อยและซ้ำที่สุดในโลก คุณสมบัติพื้นฐาน: การวัดแรงดันไฟตรงและไฟฟ้ากระแสสลับสูงสุด 1,000 V (ความต้านทานอินพุต 1 MΩ), การวัดกระแสตรงสูงสุด 10 A, การวัดความต้านทานสูงสุด 2 MΩ, การทดสอบไดโอดและทรานซิสเตอร์ นอกจากนี้ ในบางรุ่นยังมีโหมดของการเชื่อมต่อเสียงที่ต่อเนื่อง การวัดอุณหภูมิแบบมีและไม่มีเทอร์โมคัปเปิล การสร้างคดเคี้ยวด้วยความถี่ 50 ... 60 Hz หรือ 1 kHz ผู้ผลิตหลักของชุดมัลติมิเตอร์นี้คือ Precision Mastech Enterprises (ฮ่องกง)

พื้นฐานของมัลติมิเตอร์คือ ADC IC1 ประเภท 7106 (อะนาล็อกในประเทศที่ใกล้ที่สุดคือไมโครเซอร์กิต 572PV5) แผนภาพบล็อกของมันแสดงในรูปที่ 1 และพินสำหรับการดำเนินการในแพ็คเกจ DIP-40 แสดงในรูปที่ 2. เคอร์เนล 7106 อาจมีคำนำหน้าแตกต่างกันไปขึ้นอยู่กับผู้ผลิต: ICL7106, TC7106 เป็นต้น เมื่อเร็ว ๆ นี้มีการใช้ไมโครเซอร์กิตที่ไม่ได้บรรจุหีบห่อ (ชิป DIE) มากขึ้นเรื่อย ๆ ซึ่งคริสตัลจะถูกบัดกรีโดยตรงไปยังแผงวงจรพิมพ์

พิจารณาวงจรของมัลติมิเตอร์ M832 จาก Mastech (รูปที่ 3) พิน 1 ของ IC1 คือแหล่งจ่ายไฟแบตเตอรี่บวก 9V, พิน 26 เป็นค่าลบ ภายใน ADC มีแหล่งจ่ายแรงดันไฟฟ้าที่เสถียร 3 V อินพุตเชื่อมต่อกับพิน 1 ของ IC1 และเอาต์พุตเชื่อมต่อกับพิน 32 ขา 32 เชื่อมต่อกับพินทั่วไปของมัลติมิเตอร์และเชื่อมต่อแบบไฟฟ้ากับอินพุต COM ของเครื่องมือ ความต่างศักย์ระหว่างขั้ว 1 และ 32 อยู่ที่ประมาณ 3 V ในแรงดันไฟฟ้าที่หลากหลาย - จากค่าปกติถึง 6.5 V แรงดันไฟฟ้าที่เสถียรนี้จ่ายให้กับตัวแบ่งแบบปรับได้ R11, VR1, R13 และจากเอาต์พุตไปยังอินพุตของไมโครเซอร์กิต 36 ​​(ในโหมดการวัดกระแสและแรงดัน) ตัวแบ่งกำหนดศักยภาพ U ที่พิน 36 เท่ากับ 100 mV ตัวต้านทาน R12, R25 และ R26 ทำหน้าที่ป้องกัน ทรานซิสเตอร์ Q102 และตัวต้านทาน R109, R110 และ R111 มีหน้าที่ในการบ่งชี้แบตเตอรี่ต่ำ ตัวเก็บประจุ C7, C8 และตัวต้านทาน R19, R20 มีหน้าที่ในการแสดงจุดทศนิยมของจอแสดงผล

ช่วงแรงดันไฟฟ้าอินพุตที่ใช้งาน Umax ขึ้นอยู่กับระดับของแรงดันอ้างอิงที่ปรับได้โดยตรงที่ขั้ว 36 และ 35 และ is

ความเสถียรและความแม่นยำของการอ่านจอแสดงผลขึ้นอยู่กับความเสถียรของแรงดันอ้างอิงนี้

การอ่านค่า N ขึ้นอยู่กับแรงดันไฟฟ้าขาเข้า U และแสดงเป็นตัวเลข

พิจารณาการทำงานของอุปกรณ์ในโหมดหลัก

แผนภาพแบบง่ายของมัลติมิเตอร์ในโหมดการวัดแรงดันไฟฟ้าแสดงในรูปที่ 4.

เมื่อวัดแรงดันไฟฟ้ากระแสตรง สัญญาณอินพุตจะถูกนำไปใช้กับ R1…R6 จากเอาต์พุตซึ่งผ่านสวิตช์ [ตามแบบแผน 1-8/1…1-8/2) จะถูกป้อนไปยังตัวต้านทานป้องกัน R17 . ตัวต้านทานนี้ยังสร้างตัวกรองความถี่ต่ำผ่านร่วมกับตัวเก็บประจุ C3 เมื่อทำการวัดแรงดันไฟ AC ถัดไป สัญญาณจะถูกส่งไปยังอินพุตโดยตรงของชิป ADC พิน 31 ศักยภาพของเอาต์พุตทั่วไปที่สร้างโดยแหล่งจ่ายแรงดันไฟฟ้าที่เสถียร 3 V, พิน 32 จะถูกนำไปใช้กับอินพุตผกผันของไมโครเซอร์กิต

เมื่อวัดแรงดันไฟฟ้ากระแสสลับ จะแก้ไขด้วยวงจรเรียงกระแสครึ่งคลื่นบนไดโอด D1 ตัวต้านทาน R1 และ R2 ถูกเลือกในลักษณะที่เมื่อทำการวัดแรงดันไซน์ อุปกรณ์จะแสดงค่าที่ถูกต้อง การป้องกัน ADC มีให้โดย R1…R6 ตัวแบ่งและตัวต้านทาน R17

แผนภาพแบบง่ายของมัลติมิเตอร์ในโหมดการวัดปัจจุบันแสดงในรูปที่ 5.

ในโหมดการวัดกระแสตรง ตัวหลังจะไหลผ่านตัวต้านทาน R0, R8, R7 และ R6 ซึ่งจะเปลี่ยนไปตามช่วงการวัด แรงดันไฟตกคร่อมตัวต้านทานเหล่านี้ผ่าน R17 จะถูกป้อนเข้ากับอินพุตของ ADC และผลลัพธ์จะแสดงขึ้น การป้องกัน ADC มีให้โดยไดโอด D2, D3 (อาจไม่ได้ติดตั้งในบางรุ่น) และฟิวส์ F.

แผนภาพแบบง่ายของมัลติมิเตอร์ในโหมดการวัดความต้านทานแสดงในรูปที่ 6. ในโหมดการวัดความต้านทาน ใช้การพึ่งพาที่แสดงโดยสูตร (2)

แผนภาพแสดงให้เห็นว่ากระแสเดียวกันจากแหล่งจ่ายแรงดัน +U ไหลผ่านตัวต้านทานอ้างอิงและตัวต้านทานที่วัดได้ R "(กระแสอินพุต 35, 36, 30 และ 31 มีน้อยมาก) และอัตราส่วนของ U และ U เท่ากับอัตราส่วน ของความต้านทานของตัวต้านทาน R" และ R ^ R1..R6 ใช้เป็นตัวต้านทานอ้างอิง R10 และ R103 ใช้เป็นตัวต้านทานการตั้งค่ากระแส การป้องกัน ADC มีให้โดยเทอร์มิสเตอร์ R18 (บางรุ่นราคาถูกใช้ตัวต้านทาน 1.2 kΩ ปกติ), Q1 ในโหมดซีเนอร์ไดโอด (ไม่ได้ติดตั้งเสมอ) และตัวต้านทาน R35, R16 และ R17 ที่อินพุต 36, 35 และ 31 ของ ADC

โหมดความต่อเนื่องวงจรความต่อเนื่องใช้ IC2 (LM358) ซึ่งมีแอมพลิฟายเออร์การทำงานสองตัว เครื่องกำเนิดเสียงประกอบอยู่บนแอมพลิฟายเออร์ตัวหนึ่ง ตัวเปรียบเทียบอีกตัวหนึ่ง เมื่อแรงดันไฟฟ้าที่อินพุตของตัวเปรียบเทียบ (พิน 6) น้อยกว่าเกณฑ์ แรงดันไฟต่ำจะถูกตั้งค่าที่เอาต์พุต (พิน 7) ซึ่งจะเปิดคีย์บนทรานซิสเตอร์ Q101 ส่งผลให้เกิดสัญญาณที่ได้ยิน เกณฑ์กำหนดโดยตัวแบ่ง R103, R104 การป้องกันมีให้โดยตัวต้านทาน R106 ที่อินพุตของตัวเปรียบเทียบ

ความผิดปกติทั้งหมดสามารถแบ่งออกเป็นข้อบกพร่องของโรงงาน (และสิ่งนี้เกิดขึ้น) และความเสียหายที่เกิดจากการกระทำที่ผิดพลาดของผู้ปฏิบัติงาน

เนื่องจากมัลติมิเตอร์ใช้การยึดแน่น การลัดวงจรขององค์ประกอบ การบัดกรีที่ไม่ดี และการแตกหักของตัวนำองค์ประกอบ โดยเฉพาะอย่างยิ่งที่ตั้งอยู่ตามขอบของบอร์ด การซ่อมแซมอุปกรณ์ที่ผิดพลาดควรเริ่มต้นด้วยการตรวจสอบแผงวงจรพิมพ์ด้วยสายตา ข้อบกพร่องจากโรงงานที่พบบ่อยที่สุดของมัลติมิเตอร์ M832 แสดงอยู่ในตาราง

สามารถตรวจสอบความสมบูรณ์ของจอ LCD ได้โดยใช้แหล่งจ่ายแรงดันไฟฟ้ากระแสสลับที่มีความถี่ 50.60 Hz และแอมพลิจูดหลายโวลต์ คุณสามารถใช้มัลติมิเตอร์ M832 ซึ่งมีโหมดการสร้างแบบคดเคี้ยวได้ เนื่องจากเป็นแหล่งจ่ายแรงดันไฟฟ้ากระแสสลับ ในการทดสอบจอแสดงผล ให้วางบนพื้นผิวเรียบโดยยกหน้าจอขึ้น ต่อโพรบมัลติมิเตอร์ M832 หนึ่งตัวกับขั้วต่อทั่วไปของไฟแสดงสถานะ (แถวล่าง ขั้วต่อด้านซ้าย) และใช้โพรบมัลติมิเตอร์อีกตัวสลับกับขั้วต่อจอแสดงผลที่เหลือ หากคุณสามารถจุดระเบิดทุกส่วนของจอแสดงผลได้แสดงว่าใช้งานได้

ความผิดปกติข้างต้นอาจปรากฏขึ้นระหว่างการใช้งาน ควรสังเกตว่าในโหมดการวัดแรงดัน DC อุปกรณ์ไม่ค่อยล้มเหลวเพราะ ได้รับการปกป้องอย่างดีจากการโอเวอร์โหลดอินพุต ปัญหาหลักเกิดขึ้นเมื่อวัดกระแสหรือความต้านทาน

การซ่อมแซมอุปกรณ์ที่ผิดพลาดควรเริ่มต้นด้วยการตรวจสอบแรงดันไฟของแหล่งจ่ายและความสามารถในการทำงานของ ADC: แรงดันไฟเสถียรคือ 3 V และไม่มีการพังทลายระหว่างเอาต์พุตกำลังและเอาต์พุตทั่วไปของ ADC

ในโหมดการวัดปัจจุบันเมื่อใช้อินพุต V, Q และ mA แม้ว่าจะมีฟิวส์อยู่ก็ตาม อาจมีบางกรณีที่ฟิวส์ไหม้ช้ากว่าฟิวส์ไดโอด D2 หรือ D3 มีเวลาที่จะเจาะทะลุ หากมีการติดตั้งฟิวส์ในมัลติมิเตอร์ที่ไม่ตรงตามข้อกำหนดของคำแนะนำ ในกรณีนี้ความต้านทาน R5 ... R8 อาจไหม้และอาจไม่ปรากฏให้เห็นบนความต้านทาน ในกรณีแรก เมื่อมีเพียงไดโอดเท่านั้นที่ทะลุผ่าน ข้อบกพร่องจะปรากฏเฉพาะในโหมดการวัดปัจจุบันเท่านั้น: กระแสจะไหลผ่านอุปกรณ์ แต่หน้าจอจะแสดงค่าศูนย์ ในกรณีที่ตัวต้านทาน R5 หรือ R6 เกิดความเหนื่อยหน่ายในโหมดการวัดแรงดันไฟ อุปกรณ์จะประเมินค่าที่อ่านค่าสูงไปหรือแสดงการโอเวอร์โหลด เมื่อตัวต้านทานตัวใดตัวหนึ่งหรือทั้งสองตัวถูกเผาไหม้จนหมด อุปกรณ์จะไม่ถูกรีเซ็ตในโหมดการวัดแรงดันไฟฟ้า แต่เมื่อปิดอินพุต จอแสดงผลจะถูกตั้งค่าเป็นศูนย์ เมื่อตัวต้านทาน R7 หรือ R8 หมดในช่วงการวัดปัจจุบัน 20 mA และ 200 mA อุปกรณ์จะแสดงโอเวอร์โหลดและในช่วง 10 A - มีเพียงศูนย์เท่านั้น

ในโหมดการวัดความต้านทาน ความผิดปกติมักเกิดขึ้นในช่วง 200 โอห์ม และ 2000 โอห์ม ในกรณีนี้ เมื่อใช้แรงดันไฟฟ้ากับอินพุต ตัวต้านทาน R5, R6, R10, R18, ทรานซิสเตอร์ Q1 จะไหม้และตัวเก็บประจุ C6 จะขาด หากทรานซิสเตอร์ Q1 แตกอย่างสมบูรณ์ เมื่อวัดความต้านทาน อุปกรณ์จะแสดงค่าศูนย์ ด้วยการสลายตัวที่ไม่สมบูรณ์ของทรานซิสเตอร์ มัลติมิเตอร์ที่มีโพรบแบบเปิดจะแสดงความต้านทานของทรานซิสเตอร์นี้ ในโหมดการวัดแรงดันและกระแส ทรานซิสเตอร์จะลัดวงจรโดยสวิตช์ และไม่ส่งผลต่อการอ่านมัลติมิเตอร์ เมื่อตัวเก็บประจุ C6 เสีย มัลติมิเตอร์จะไม่วัดแรงดันไฟฟ้าในช่วง 20 V, 200 V และ 1000 V หรือประเมินค่าที่อ่านได้ในช่วงเหล่านี้ต่ำเกินไป

หากไม่มีข้อบ่งชี้บนจอแสดงผลเมื่อมีกระแสไฟไปยัง ADC หรือหากองค์ประกอบวงจรจำนวนมากถูกเผาไหม้ด้วยสายตา มีความเป็นไปได้สูงที่จะเกิดความเสียหายต่อ ADC ความสามารถในการซ่อมบำรุงของ ADC ได้รับการตรวจสอบโดยการตรวจสอบแรงดันไฟฟ้าของแหล่งจ่ายแรงดันไฟฟ้าที่เสถียรที่ 3 V ในทางปฏิบัติ ADC จะเผาไหม้ออกก็ต่อเมื่อไฟฟ้าแรงสูงถูกนำไปใช้กับอินพุต ซึ่งสูงกว่า 220 V มาก บ่อยครั้งมากที่รอยแตกปรากฏขึ้น สารประกอบ ADC แบบไร้กรอบการใช้กระแสไฟของไมโครเซอร์กิตเพิ่มขึ้นซึ่งนำไปสู่ความร้อนที่เห็นได้ชัดเจน .

เมื่อแรงดันไฟฟ้าสูงมากถูกนำไปใช้กับอินพุตของอุปกรณ์ในโหมดการวัดแรงดันไฟฟ้า อาจเกิดการพังทลายตามองค์ประกอบ (ตัวต้านทาน) และตามแผงวงจรพิมพ์ ในกรณีของโหมดการวัดแรงดันไฟฟ้า วงจรได้รับการป้องกันโดย ตัวแบ่งบนแนวต้าน R1.R6

สำหรับรุ่น DT ราคาถูก ชิ้นส่วนที่มีความยาวสามารถลัดไปยังหน้าจอที่อยู่ด้านหลังของอุปกรณ์ ซึ่งจะขัดขวางการทำงานของวงจร Mastech ไม่มีข้อบกพร่องดังกล่าว

แหล่งจ่ายแรงดันไฟฟ้าที่เสถียร 3 V ใน ADC สำหรับรุ่นจีนราคาถูกสามารถให้แรงดันไฟฟ้า 2.6.3.4 V ได้จริงและสำหรับอุปกรณ์บางอย่างจะหยุดทำงานที่แรงดันแบตเตอรี่ 8.5 V

รุ่น DT ใช้ ADC ที่มีคุณภาพต่ำและมีความละเอียดอ่อนมากต่อค่าสตริงของตัวรวม C4 และ R14 ในมัลติมิเตอร์ Mastech ADC คุณภาพสูงทำให้สามารถใช้องค์ประกอบที่มีเรตติ้งใกล้เคียงกันได้

บ่อยครั้งในมัลติมิเตอร์ DT ที่มีโพรบเปิดในโหมดการวัดความต้านทาน อุปกรณ์เข้าใกล้ค่าโอเวอร์โหลด (“1” บนจอแสดงผล) เป็นเวลานานมากหรือไม่ได้ตั้งค่าเลย คุณสามารถ "รักษา" ชิป ADC คุณภาพต่ำได้โดยการลดค่าความต้านทาน R14 จาก 300 เป็น 100 kOhm

เมื่อวัดความต้านทานในส่วนบนของช่วง อุปกรณ์จะ "เติม" ค่าที่อ่านได้ ตัวอย่างเช่น เมื่อวัดความต้านทานที่มีความต้านทาน 19.8 kOhm จะแสดง 19.3 kOhm มันถูก "รักษา" โดยแทนที่ตัวเก็บประจุ C4 ด้วยตัวเก็บประจุ 0.22 ... 0.27 uF

เนื่องจากบริษัทจีนราคาถูกใช้ ADC แบบไร้กรอบคุณภาพต่ำ จึงมักมีบางกรณีของเอาต์พุตที่เสียหาย ในขณะที่การระบุสาเหตุของการทำงานผิดพลาดเป็นเรื่องยากมาก และสามารถแสดงออกมาในรูปแบบต่างๆ ได้ ขึ้นอยู่กับเอาต์พุตที่เสียหาย ตัวอย่างเช่น เอาต์พุตตัวบ่งชี้ตัวใดตัวหนึ่งไม่ติดสว่าง เนื่องจากมัลติมิเตอร์ใช้จอแสดงผลที่มีสัญญาณคงที่ เพื่อระบุสาเหตุของการทำงานผิดพลาด จึงจำเป็นต้องตรวจสอบแรงดันไฟฟ้าที่เอาต์พุตที่สอดคล้องกันของชิป ADC จึงควรมีค่าประมาณ 0.5 V เมื่อเทียบกับเอาต์พุตทั่วไป หากเป็นศูนย์แสดงว่า ADC มีข้อบกพร่อง

มีความผิดปกติที่เกี่ยวข้องกับหน้าสัมผัสคุณภาพต่ำบนสวิตช์บิสกิต อุปกรณ์จะทำงานเมื่อกดสวิตช์บิสกิตเท่านั้น บริษัทที่ผลิตมัลติมิเตอร์ราคาถูกมักจะปิดรางใต้สวิตช์บิสกิตด้วยจาระบี ซึ่งเป็นสาเหตุที่ทำให้ออกซิไดซ์ได้อย่างรวดเร็ว บ่อยครั้งที่เส้นทางสกปรกด้วยบางสิ่งบางอย่าง มีการซ่อมแซมดังนี้: แผงวงจรพิมพ์จะถูกลบออกจากเคสและแทร็กสวิตช์จะถูกเช็ดด้วยแอลกอฮอล์ จากนั้นใช้ปิโตรเลียมเจลลี่ทางเทคนิคบางๆ ทุกอย่างอุปกรณ์ได้รับการซ่อมแซม

ด้วยอุปกรณ์ในซีรีส์ DT บางครั้งอาจเกิดการวัดแรงดันไฟสลับด้วยเครื่องหมายลบ นี่แสดงว่า D1 ได้รับการติดตั้งอย่างไม่ถูกต้อง ซึ่งมักเกิดจากการทำเครื่องหมายที่ไม่ถูกต้องบนตัวไดโอด

มันเกิดขึ้นที่ผู้ผลิตมัลติมิเตอร์ราคาถูกใส่แอมพลิฟายเออร์คุณภาพต่ำในวงจรกำเนิดเสียงจากนั้นเมื่อเปิดอุปกรณ์เสียงกริ่งจะดังขึ้น ข้อบกพร่องนี้ถูกกำจัดโดยการบัดกรีตัวเก็บประจุด้วยไฟฟ้าด้วยค่าเล็กน้อย 5 ไมโครฟารัดขนานกับวงจรไฟฟ้า หากสิ่งนี้ไม่รับประกันการทำงานที่เสถียรของเครื่องกำเนิดเสียง ก็จำเป็นต้องเปลี่ยนแอมพลิฟายเออร์ในการดำเนินงานด้วย LM358P

มักจะมีความรำคาญเช่นการรั่วไหลของแบตเตอรี่ อิเล็กโทรไลต์หยดเล็กๆ สามารถเช็ดด้วยแอลกอฮอล์ได้ แต่ถ้ากระดานถูกน้ำท่วมอย่างหนัก ผลลัพธ์ที่ดีก็สามารถได้จากการซักด้วยน้ำร้อนและสบู่ซักผ้า หลังจากถอดตัวบ่งชี้และยกเลิกการขายเครื่องส่งเสียงดังเอี้ยแล้ว โดยใช้แปรง เช่น แปรงสีฟัน คุณต้องถูกระดานทั้งสองด้านอย่างระมัดระวังแล้วล้างออกด้วยน้ำประปาที่ไหลผ่าน ซักซ้ำ 2.3 ครั้ง บอร์ดจะแห้งและติดตั้งในกล่อง

ในอุปกรณ์ส่วนใหญ่ที่ผลิตเมื่อเร็วๆ นี้ จะใช้ ADC ที่ไม่ได้บรรจุหีบห่อ (ชิป DIE) คริสตัลถูกติดตั้งโดยตรงบนแผงวงจรพิมพ์และเติมด้วยเรซิน น่าเสียดายที่สิ่งนี้ลดความสามารถในการบำรุงรักษาอุปกรณ์ลงอย่างมากเพราะ เมื่อ ADC ล้มเหลวซึ่งเกิดขึ้นค่อนข้างบ่อยก็ยากที่จะเปลี่ยน อุปกรณ์ที่มี ADC ที่ไม่ได้บรรจุหีบห่อนั้นบางครั้งไวต่อแสงจ้า ตัวอย่างเช่น เมื่อทำงานใกล้กับโคมไฟตั้งโต๊ะ ข้อผิดพลาดในการวัดอาจเพิ่มขึ้น ความจริงก็คือตัวบ่งชี้และบอร์ดของอุปกรณ์มีความโปร่งใสและแสงที่ทะลุผ่านนั้นตกลงบนคริสตัล ADC ทำให้เกิดเอฟเฟกต์โฟโตอิเล็กทริก เพื่อขจัดข้อบกพร่องนี้ คุณต้องถอดบอร์ดออก และเมื่อถอดตัวบ่งชี้แล้ว ให้กาวตำแหน่งของคริสตัล ADC (สามารถมองเห็นได้ชัดเจนผ่านกระดาน) ด้วยกระดาษหนา

เมื่อซื้อมัลติมิเตอร์ DT คุณควรให้ความสนใจกับคุณภาพของกลไกของสวิตช์ อย่าลืมหมุนสวิตช์ของมัลติมิเตอร์หลาย ๆ ครั้งเพื่อให้แน่ใจว่าสวิตช์เกิดขึ้นอย่างชัดเจนและไม่มีการติดขัด: ไม่สามารถซ่อมแซมข้อบกพร่องของพลาสติกได้

เซอร์เกย์ โบบิน. “การซ่อมแซมอุปกรณ์อิเล็กทรอนิกส์” ครั้งที่ 1, 2546.

ค่อนข้างอยู่ในอำนาจของผู้ใช้แต่ละคนที่คุ้นเคยกับพื้นฐานของอิเล็กทรอนิกส์และวิศวกรรมไฟฟ้าในการจัดระเบียบและซ่อมแซมมัลติมิเตอร์อย่างอิสระ แต่ก่อนที่จะดำเนินการซ่อมแซมดังกล่าว จำเป็นต้องพยายามหาลักษณะของความเสียหายที่เกิดขึ้นก่อน

การตรวจสอบความสามารถในการซ่อมบำรุงของอุปกรณ์ในขั้นตอนเริ่มต้นของการซ่อมแซมจะสะดวกที่สุดโดยการตรวจสอบวงจรอิเล็กทรอนิกส์ของอุปกรณ์ สำหรับกรณีนี้ กฎการแก้ไขปัญหาต่อไปนี้ได้รับการพัฒนา:

  • รูปภาพ - มัลติมิเตอร์แบบ Do-it-yourself 830 การซ่อมแซมจำเป็นต้องตรวจสอบแผงวงจรพิมพ์ของมัลติมิเตอร์อย่างรอบคอบซึ่งอาจมีข้อบกพร่องและข้อผิดพลาดจากโรงงานที่มองเห็นได้ชัดเจน
  • ควรให้ความสนใจเป็นพิเศษกับกางเกงขาสั้นที่ไม่ต้องการและการบัดกรีคุณภาพต่ำ รวมถึงข้อบกพร่องบนขั้วต่อตามขอบของบอร์ด (ในบริเวณที่เชื่อมต่อจอแสดงผล) สำหรับการซ่อมแซมคุณจะต้องใช้การบัดกรี
  • ข้อผิดพลาดจากโรงงานส่วนใหญ่มักปรากฏให้เห็นในความจริงที่ว่ามัลติมิเตอร์ไม่แสดงสิ่งที่ควรเป็นไปตามคำแนะนำ ดังนั้นจึงมีการตรวจสอบการแสดงผลก่อน

หากมัลติมิเตอร์อ่านค่าไม่ถูกต้องในทุกโหมดและ IC1 ร้อนขึ้น คุณต้องตรวจสอบขั้วต่อเพื่อตรวจสอบทรานซิสเตอร์ หากสายยาวขาด การซ่อมแซมจะประกอบด้วยการเปิดเท่านั้น

โดยรวมแล้วสามารถมีข้อบกพร่องที่มองเห็นได้จำนวนเพียงพอ คุณสามารถทำความคุ้นเคยกับบางส่วนในตารางแล้วกำจัดทิ้งด้วยตัวเอง (ที่: ก่อนทำการซ่อมจำเป็นต้องศึกษาวงจรมัลติมิเตอร์ซึ่งปกติจะระบุไว้ในหนังสือเดินทาง

หากคุณต้องการตรวจสอบความสามารถในการซ่อมบำรุงและซ่อมแซมตัวบ่งชี้มัลติมิเตอร์ พวกเขามักจะหันไปใช้อุปกรณ์เพิ่มเติมที่สร้างสัญญาณที่มีความถี่และแอมพลิจูดที่เหมาะสม (50-60 Hz และสองสามโวลต์) ในกรณีที่ไม่มี คุณสามารถใช้มัลติมิเตอร์ชนิด M832 ที่มีฟังก์ชันสร้างพัลส์สี่เหลี่ยม (คดเคี้ยว)

ในการวินิจฉัยและซ่อมแซมจอแสดงผลมัลติมิเตอร์ จำเป็นต้องถอดบอร์ดการทำงานออกจากกล่องเครื่องมือและเลือกตำแหน่งที่สะดวกสำหรับการตรวจสอบหน้าสัมผัสตัวบ่งชี้ (หน้าจอขึ้น) หลังจากนั้น คุณควรเชื่อมต่อปลายโพรบหนึ่งตัวกับเอาต์พุตทั่วไปของตัวบ่งชี้ที่อยู่ระหว่างการทดสอบ (อยู่ที่แถวล่างสุด ซ้ายสุด) และแตะเอาต์พุตสัญญาณของจอแสดงผลโดยให้ปลายอีกด้านหนึ่งกลับกัน ในกรณีนี้ ทุกส่วนควรสว่างทีละส่วนตามการเดินสายของสายสัญญาณ ซึ่งควรอ่านแยกต่างหาก "การทำงาน" ปกติของส่วนที่ตรวจสอบในทุกโหมดแสดงว่าจอแสดงผลทำงาน

ข้อมูลเพิ่มเติม. ความผิดปกติที่ระบุมักปรากฏขึ้นระหว่างการทำงานของมัลติมิเตอร์แบบดิจิตอล ซึ่งชิ้นส่วนการวัดล้มเหลวและจำเป็นต้องได้รับการซ่อมแซมน้อยมาก (โดยมีเงื่อนไขว่าจะต้องปฏิบัติตามข้อกำหนดของคำแนะนำ)

ข้อสังเกตสุดท้ายเกี่ยวข้องกับค่าคงที่เท่านั้น ในการวัดซึ่งมัลติมิเตอร์ได้รับการปกป้องอย่างดีจากการโอเวอร์โหลด ปัญหาที่ร้ายแรงในการระบุสาเหตุของความล้มเหลวของอุปกรณ์มักเกิดขึ้นเมื่อพิจารณาความต้านทานของส่วนของวงจรและในโหมดความต่อเนื่อง

ในโหมดนี้ ตามกฎแล้ว ความผิดปกติลักษณะเฉพาะจะปรากฏในช่วงการวัดสูงถึง 200 และสูงถึง 2,000 โอห์ม เมื่อแรงดันไฟฟ้าภายนอกเข้าสู่อินพุตตามกฎแล้วตัวต้านทานภายใต้การกำหนด R5, R6, R10, R18 และทรานซิสเตอร์ Q1 จะเผาไหม้ออก นอกจากนี้ตัวเก็บประจุ C6 มักจะพัง ผลที่ตามมาของการสัมผัสกับศักยภาพภายนอกมีดังนี้:

  1. รูปภาพ - มัลติมิเตอร์แบบ Do-it-yourself 830 การซ่อมแซมด้วยไตรโอดที่ "หมดไฟ" อย่างสมบูรณ์ Q1 เมื่อพิจารณาความต้านทานมัลติมิเตอร์จะแสดงหนึ่งศูนย์
  2. ในกรณีที่ทรานซิสเตอร์ไม่สมบูรณ์ อุปกรณ์ปลายเปิดควรแสดงความต้านทานของจุดต่อ

บันทึก! ในโหมดการวัดอื่นๆ ทรานซิสเตอร์นี้จะเกิดการลัดวงจร ดังนั้นจึงไม่ส่งผลต่อการอ่านค่าของจอแสดงผล

เมื่อแบ่ง C6 มัลติมิเตอร์จะไม่ทำงานที่ขีด จำกัด การวัด 20, 200 และ 1,000 โวลต์ (ไม่รวมตัวเลือกในการประเมินค่าที่อ่านต่ำเกินไป)

หากมัลติมิเตอร์ส่งเสียงบี๊บอย่างต่อเนื่องระหว่างสัญญาณโทรศัพท์หรือเงียบ สาเหตุอาจเกิดจากการบัดกรีพินไมโครชิป IC2 ที่มีคุณภาพต่ำ การซ่อมแซมประกอบด้วยการบัดกรีอย่างระมัดระวัง

การตรวจสอบและซ่อมแซมมัลติมิเตอร์ที่ไม่ทำงานซึ่งทำงานผิดปกติซึ่งไม่เกี่ยวข้องกับกรณีที่พิจารณาแล้ว ขอแนะนำให้เริ่มต้นด้วยการตรวจสอบแรงดันไฟฟ้า 3 โวลต์บนบัสจ่าย ADC ในกรณีนี้ ก่อนอื่น จำเป็นต้องตรวจสอบให้แน่ใจว่าไม่มีการแยกส่วนระหว่างขั้วจ่ายไฟและขั้วทั่วไปของคอนเวอร์เตอร์

การหายไปขององค์ประกอบบ่งชี้บนหน้าจอแสดงผลเมื่อมีแหล่งจ่ายแรงดันไฟไปยังตัวแปลงมีแนวโน้มมากที่สุดบ่งชี้ถึงความเสียหายต่อวงจรข้อสรุปเดียวกันนี้สามารถสรุปได้เมื่อองค์ประกอบวงจรจำนวนมากที่ตั้งอยู่ใกล้กับ ADC หมดไฟ

สำคัญ! ในทางปฏิบัติ โหนดนี้จะ "เผาไหม้" ต่อเมื่อมีแรงดันไฟฟ้าสูงเพียงพอ (มากกว่า 220 โวลต์) ป้อนเข้า ซึ่งจะแสดงออกมาให้เห็นเป็นรอยร้าวในสารประกอบของโมดูล

ก่อนจะพูดถึงการซ่อมต้องเช็คให้ดีเสียก่อน วิธีง่ายๆ ในการทดสอบ ADC เพื่อความเหมาะสมสำหรับการทำงานต่อไปคือการทดสอบเอาท์พุตโดยใช้มัลติมิเตอร์ที่รู้จักดีในคลาสเดียวกัน โปรดทราบว่ากรณีที่มัลติมิเตอร์ที่สองแสดงผลการวัดไม่ถูกต้องไม่เหมาะสำหรับการตรวจสอบดังกล่าว

เมื่อเตรียมการใช้งานอุปกรณ์จะเปลี่ยนเป็นโหมด "เสียงเรียกเข้า" ของไดโอดและปลายสายวัดในฉนวนสีแดงจะเชื่อมต่อกับเอาต์พุตของไมโครเซอร์กิต "ลบ" หลังจากโพรบสีดำนี้ ขาสัญญาณแต่ละข้างจะถูกสัมผัสตามลำดับ เนื่องจากมีไดโอดป้องกันเชื่อมต่อในทิศทางตรงกันข้ามที่อินพุทของวงจร หลังจากใช้แรงดันไฟตรงจากมัลติมิเตอร์ของบริษัทอื่นแล้ว ไดโอดเหล่านั้นจึงควรเปิดขึ้น

ความจริงของการเปิดของพวกเขาถูกบันทึกไว้บนหน้าจอในรูปแบบของแรงดันตกที่จุดเชื่อมต่อขององค์ประกอบเซมิคอนดักเตอร์ วงจรได้รับการตรวจสอบในลักษณะเดียวกันเมื่อโพรบในฉนวนสีดำเชื่อมต่อกับพิน 1 (+ แหล่งจ่ายไฟ ADC) จากนั้นสัมผัสพินอื่นๆ ทั้งหมด ในกรณีนี้ ค่าที่อ่านได้บนหน้าจอแสดงผลควรจะเหมือนกับในกรณีแรก