วงจรซ่อมแซมมัลติมิเตอร์ ut33c ที่ต้องทำด้วยตัวเอง

รายละเอียด: วงจรซ่อมแซมมัลติมิเตอร์ ut33c ที่ต้องทำด้วยตัวเองจากผู้เชี่ยวชาญจริงสำหรับเว็บไซต์ my.housecope.com

เมื่อทำการซ่อมอุปกรณ์อิเล็กทรอนิกส์ จำเป็นต้องทำการวัดจำนวนมากด้วยเครื่องมือดิจิตอลต่างๆ นี่คือออสซิลโลสโคปและเครื่องวัด ESR และสิ่งที่ใช้บ่อยที่สุดโดยไม่ต้องใช้ซึ่งการซ่อมแซมใด ๆ สามารถทำได้: แน่นอนมัลติมิเตอร์แบบดิจิตอล แต่บางครั้งมันก็เกิดขึ้นที่เครื่องมือเองต้องการความช่วยเหลือและสิ่งนี้เกิดขึ้นไม่มากจากการขาดประสบการณ์ความเร่งรีบหรือความประมาทของอาจารย์เหมือนจากอุบัติเหตุที่โชคร้ายเช่นเพิ่งเกิดขึ้นกับฉัน

DT ซีรี่ส์มัลติมิเตอร์ - ลักษณะที่ปรากฏ

มันเป็นเช่นนี้: หลังจากเปลี่ยนทรานซิสเตอร์เอฟเฟกต์สนามที่ชำรุดในระหว่างการซ่อมแซมแหล่งจ่ายไฟ LCD TV ทีวีก็ไม่ทำงาน มีความคิดเกิดขึ้นซึ่งควรจะมาเร็วกว่านี้ในขั้นการวินิจฉัย แต่ก็ไม่สามารถตรวจสอบตัวควบคุม PWM อย่างน้อยสำหรับความต้านทานต่ำหรือไฟฟ้าลัดวงจรระหว่างขาได้ ใช้เวลานานในการถอดบอร์ด ไมโครเซอร์กิตอยู่ในแพ็คเกจ DIP-8 ของเรา และการลัดวงจรที่ขาของบอร์ดเมื่อเกิดไฟฟ้าลัดวงจรก็ทำได้ไม่ยากแม้จะอยู่ด้านบนของบอร์ด

ตัวเก็บประจุด้วยไฟฟ้า 400 โวลต์

ฉันถอดทีวีออกจากเครือข่าย รอ 3 นาทีมาตรฐานเพื่อระบายภาชนะในตัวกรอง ถังขนาดใหญ่มาก ตัวเก็บประจุด้วยไฟฟ้าขนาด 200-400 โวลต์ที่ทุกคนเห็นเมื่อถอดประกอบแหล่งจ่ายไฟแบบสวิตชิ่ง

ฉันสัมผัสโพรบของมัลติมิเตอร์ในโหมดเสียงของขาคอนโทรลเลอร์ PWM - ทันใดนั้นก็มีเสียงบี๊บฉันถอดโพรบออกเพื่อให้ขาที่เหลือดังสัญญาณจะดังขึ้นอีก 2 วินาที ฉันคิดว่านั่นคือทั้งหมด: ตัวต้านทาน 2 ตัวถูกไฟไหม้อีกครั้ง ตัวหนึ่งในวงจรสำหรับวัดความต้านทานของโหมด 2 kOhm ที่ 900 โอห์ม ตัวที่สองที่ 1.5 - 2 kOhm ซึ่งมีแนวโน้มมากที่สุดในวงจรป้องกัน ADC ก่อนหน้านี้ฉันเคยเจอเรื่องน่ารำคาญมาก่อนในอดีตคนรู้จักเพิ่งเผาฉันด้วยผู้ทดสอบดังนั้นฉันจึงไม่อารมณ์เสีย - ฉันไปที่ร้านขายวิทยุสำหรับตัวต้านทานสองตัวในแพ็คเกจ SMD 0805 และ 0603 แต่ละรูเบิล และบัดกรีพวกเขา

วิดีโอ (คลิกเพื่อเล่น)

การค้นหาข้อมูลเกี่ยวกับการซ่อมแซมมัลติมิเตอร์ในแหล่งข้อมูลต่าง ๆ ในคราวเดียวได้ให้วงจรทั่วไปหลายวงจรบนพื้นฐานของการสร้างมัลติมิเตอร์ราคาถูกส่วนใหญ่ ปัญหาคือการกำหนดบนกระดานไม่ตรงกับการกำหนดบนวงจรที่พบ

ตัวต้านทานการไหม้บนบอร์ดมัลติมิเตอร์

แต่ฉันโชคดีที่หนึ่งในฟอรัมที่มีคนอธิบายรายละเอียดเกี่ยวกับสถานการณ์ที่คล้ายกันความล้มเหลวของมัลติมิเตอร์เมื่อทำการวัดด้วยแรงดันไฟฟ้าในวงจรในโหมดการโทรออกด้วยเสียง หากไม่มีปัญหากับตัวต้านทาน 900 โอห์ม ตัวต้านทานหลายตัวเชื่อมต่อกันเป็นสายโซ่บนบอร์ดและหาได้ง่าย ยิ่งไปกว่านั้น ด้วยเหตุผลบางอย่างมันไม่เปลี่ยนเป็นสีดำ เนื่องจากมันมักจะเกิดขึ้นระหว่างการเผาไหม้ และเราสามารถอ่านค่าเงินและพยายามวัดความต้านทานของมัน เนื่องจากมัลติมิเตอร์มีตัวต้านทานที่แน่นอนซึ่งมีตัวเลข 4 หลักในการกำหนด จึงเป็นการดีกว่าถ้าเป็นไปได้ ให้เปลี่ยนตัวต้านทานให้เหมือนกันทุกประการ

ไม่มีตัวต้านทานที่แม่นยำในร้านวิทยุของเรา และฉันใช้ตัวต้านทาน 910 โอห์มปกติ ตามที่แสดงในทางปฏิบัติ ข้อผิดพลาดในการเปลี่ยนดังกล่าวจะค่อนข้างไม่มีนัยสำคัญ เนื่องจากความแตกต่างระหว่างตัวต้านทานเหล่านี้ 900 และ 910 โอห์ม มีเพียง 1% การหาค่าของตัวต้านทานตัวที่สองยากกว่า - จากข้อสรุปมีแทร็กไปจนถึงหน้าสัมผัสช่วงเปลี่ยนผ่านสองตัวด้วยการทำให้เป็นโลหะที่ด้านหลังของบอร์ดไปจนถึงสวิตช์

ที่สำหรับบัดกรีเทอร์มิสเตอร์

แต่ฉันโชคดีอีกครั้ง: เหลือสองรูบนกระดานเชื่อมต่อด้วยเส้นทางขนานกับขั้วของตัวต้านทานและลงนาม RTS1 จากนั้นทุกอย่างชัดเจน เทอร์มิสเตอร์ (RTS1) ตามที่เราทราบจากการจ่ายไฟแบบสวิตชิ่งนั้นถูกบัดกรีเพื่อจำกัดกระแสผ่านไดโอดของไดโอดบริดจ์เมื่อเปิดการจ่ายไฟแบบสวิตชิ่ง

เนื่องจากตัวเก็บประจุแบบอิเล็กโทรไลต์ ถังขนาดใหญ่มาก 200-400 โวลต์ ในขณะที่แหล่งจ่ายไฟเปิดอยู่ และในเสี้ยววินาทีแรกของวินาทีที่เริ่มการชาร์จ ทำตัวเหมือนไฟฟ้าลัดวงจร ซึ่งทำให้เกิดกระแสขนาดใหญ่ผ่านสะพาน ไดโอดอันเป็นผลมาจากการที่สะพานสามารถเผาไหม้ได้

เทอร์มิสเตอร์ พูดง่ายๆ ว่าในโหมดปกติโดยมีกระแสไฟขนาดเล็กที่สอดคล้องกับโหมดการทำงานของอุปกรณ์มีความต้านทานต่ำ ด้วยกระแสที่เพิ่มขึ้นอย่างรวดเร็วหลายเท่าความต้านทานของเทอร์มิสเตอร์ก็เพิ่มขึ้นอย่างรวดเร็วซึ่งตามกฎหมายของโอห์มอย่างที่เราทราบจะทำให้กระแสในส่วนวงจรลดลง

ตัวต้านทาน 2 kOhm ในแผนภาพ

เมื่อทำการซ่อมบนวงจร เราน่าจะเปลี่ยนเป็นตัวต้านทาน 1.5 kOhm ตัวต้านทานที่ระบุบนวงจรด้วยค่าเล็กน้อยที่ 2 kOhm ตามที่พวกเขาเขียนบนทรัพยากรที่ฉันเอาข้อมูลมาในระหว่างการซ่อมแซมครั้งแรก ค่าของมันคือ ไม่สำคัญและแนะนำให้วางที่ 1.5 kOhm

เรายังคง. หลังจากที่ตัวเก็บประจุถูกชาร์จและกระแสไฟในวงจรลดลง เทอร์มิสเตอร์จะลดความต้านทานลงและอุปกรณ์จะทำงานในโหมดปกติ

ตัวต้านทาน 900 โอห์มในแผนภาพ

อะไรคือจุดประสงค์ของการติดตั้งเทอร์มิสเตอร์แทนตัวต้านทานนี้ในมัลติมิเตอร์ราคาแพง? ด้วยจุดประสงค์เดียวกับในอุปกรณ์จ่ายไฟแบบสวิตชิ่ง - เพื่อลดกระแสสูงที่อาจนำไปสู่การเผาไหม้ของ ADC ที่เกิดขึ้นในกรณีของเราอันเป็นผลมาจากข้อผิดพลาดโดยผู้เชี่ยวชาญที่ทำการวัดและด้วยเหตุนี้จึงปกป้องอนาล็อกเป็นดิจิตอล ตัวแปลงของอุปกรณ์

หรือกล่าวอีกนัยหนึ่งคือหยดสีดำเดียวกันหลังจากการเผาไหม้ซึ่งอุปกรณ์มักจะไม่สมเหตุสมผลในการกู้คืนอีกต่อไปเพราะเป็นงานที่ลำบากและค่าใช้จ่ายของชิ้นส่วนจะเกินต้นทุนของมัลติมิเตอร์ใหม่อย่างน้อยครึ่งหนึ่ง

เราจะขายตัวต้านทานเหล่านี้ได้อย่างไร - ผู้เริ่มต้นที่ไม่เคยจัดการกับส่วนประกอบวิทยุ SMD มาก่อนอาจจะคิด ท้ายที่สุดพวกเขามักจะไม่มีเครื่องบัดกรีในการประชุมเชิงปฏิบัติการที่บ้าน มีสามวิธีที่นี่:

  1. ขั้นแรก คุณจะต้องใช้หัวแร้ง EPSN 25 วัตต์ที่มีปลายใบมีดที่มีการตัดตรงกลาง เพื่อให้ความร้อนเอาต์พุตทั้งสองในคราวเดียว
  2. วิธีที่สองคือการใช้ กัดด้วยใบมีดด้านข้าง หยดโลหะผสมกุหลาบหรือไม้ ไปที่หน้าสัมผัสทั้งสองของตัวต้านทานทันที และทำให้ข้อสรุปทั้งสองนี้ราบเรียบด้วยเหล็กไน
  3. และวิธีที่สามเมื่อเราไม่มีอะไรเลยนอกจากหัวแร้ง 40 วัตต์ประเภท EPSN และบัดกรี POS-61 ปกติ - เรานำไปใช้กับตะกั่วทั้งสองเพื่อให้บัดกรีผสมและเป็นผลให้จุดหลอมเหลวรวมของ การบัดกรีไร้สารตะกั่วจะลดลงและเราให้ความร้อนทั้งสองตัวนำของตัวต้านทานสลับกันในขณะที่พยายามขยับเล็กน้อย

โดยปกติสิ่งนี้ก็เพียงพอแล้วที่ตัวต้านทานของเราจะบัดกรีและยึดติดกับส่วนปลาย แน่นอน อย่าลืมทาฟลักซ์ แน่นอน ของเหลว แอลกอฮอล์ขัดสนฟลักซ์ (SKF) จะดีกว่า

ไม่ว่าในกรณีใด ๆ ไม่ว่าคุณจะถอดตัวต้านทานนี้ออกจากบอร์ดอย่างไร tubercles ของตัวประสานเก่าจะยังคงอยู่บนกระดานเราจำเป็นต้องถอดมันออกด้วยการรื้อสายถักเปียจุ่มลงในฟลักซ์แอลกอฮอล์ขัดสน เราใส่ปลายของเปียโดยตรงบนตัวประสานแล้วกดเข้าไป อุ่นด้วยปลายหัวแร้งจนกว่าบัดกรีทั้งหมดจากหน้าสัมผัสจะถูกดูดซับเข้าไปในเปีย

ถ้าอย่างนั้นก็เป็นเรื่องของเทคโนโลยี: เรานำตัวต้านทานที่เราซื้อในร้านวิทยุมาวางบนแผ่นสัมผัสที่เราปลดจากการบัดกรีกดด้วยไขควงจากด้านบนแล้วแตะหัวแร้งด้วยกำลัง 25 วัตต์ แผ่นอิเล็กโทรด และลีดที่ขอบของตัวต้านทาน บัดกรีให้เข้าที่

ถักเปียสำหรับบัดกรี - การใช้งาน

ตั้งแต่ครั้งแรกอาจจะออกมาคดแต่สิ่งที่สำคัญที่สุดคือตัวเครื่องจะได้คืนสภาพ ในฟอรั่มความคิดเห็นเกี่ยวกับการซ่อมแซมดังกล่าวถูกแบ่งออกบางคนแย้งว่าเนื่องจากความถูกของมัลติมิเตอร์จึงไม่สมเหตุสมผลที่จะซ่อมแซมเลยพวกเขาบอกว่าพวกเขาโยนทิ้งแล้วไปซื้อใหม่คนอื่นก็พร้อมที่จะ ไปจนสุดทางและประสาน ADC) แต่ดังกรณีนี้แสดงให้เห็นว่า บางครั้งการซ่อมมัลติมิเตอร์นั้นค่อนข้างง่ายและคุ้มค่า และช่างฝีมือประจำบ้านคนใดก็ตามก็สามารถจัดการการซ่อมแซมดังกล่าวได้ ขอให้โชคดีกับการซ่อมแซมของคุณ! เอเควี

รูปภาพ - วงจรซ่อมแซมมัลติมิเตอร์ ut33c ที่ต้องทำด้วยตัวเอง

เช่นเดียวกับรายการอื่น ๆ มัลติมิเตอร์อาจล้มเหลวระหว่างการทำงานหรือมีข้อบกพร่องจากโรงงานที่ไม่มีใครสังเกตเห็นในระหว่างการผลิต ในการค้นหาวิธีการซ่อมแซมมัลติมิเตอร์ คุณควรเข้าใจธรรมชาติของความเสียหายก่อน

ผู้เชี่ยวชาญแนะนำให้เริ่มค้นหาสาเหตุของการทำงานผิดพลาดด้วยการตรวจสอบแผงวงจรพิมพ์อย่างละเอียด เนื่องจากการลัดวงจรและการบัดกรีที่ไม่ดีอาจเกิดขึ้นได้ รวมถึงข้อบกพร่องในตัวนำขององค์ประกอบตามขอบของบอร์ด

ข้อบกพร่องจากโรงงานในอุปกรณ์เหล่านี้มักปรากฏบนจอแสดงผล มีได้ถึงสิบประเภท (ดูตาราง) ดังนั้นจึงเป็นการดีกว่าที่จะซ่อมแซมมัลติมิเตอร์แบบดิจิตอลโดยใช้คำแนะนำที่มาพร้อมกับอุปกรณ์

การพังทลายแบบเดียวกันอาจเกิดขึ้นหลังการดำเนินการ ความผิดปกติข้างต้นอาจปรากฏขึ้นระหว่างการใช้งาน อย่างไรก็ตาม หากอุปกรณ์ทำงานในโหมดการวัดแรงดันคงที่ อุปกรณ์จะไม่ค่อยแตกหัก

เหตุผลก็คือการป้องกันโอเวอร์โหลด นอกจากนี้ การซ่อมแซมอุปกรณ์ที่ผิดพลาดควรเริ่มต้นด้วยการตรวจสอบแรงดันไฟของแหล่งจ่ายและความสามารถในการทำงานของ ADC: แรงดันไฟเสถียรคือ 3 V และไม่มีการพังทลายระหว่างเอาต์พุตกำลังและเอาต์พุตทั่วไปของ ADC

ผู้ใช้ที่มีประสบการณ์และผู้เชี่ยวชาญได้กล่าวซ้ำแล้วซ้ำอีกว่าสาเหตุหนึ่งที่เป็นไปได้มากที่สุดของการพังบ่อยครั้งในอุปกรณ์คือการผลิตที่มีคุณภาพต่ำ กล่าวคือบัดกรีหน้าสัมผัสด้วยกรด เป็นผลให้หน้าสัมผัสถูกออกซิไดซ์อย่างง่าย

อย่างไรก็ตาม หากคุณไม่แน่ใจว่าเครื่องเสียประเภทใดที่ทำให้อุปกรณ์ไม่ทำงาน คุณควรติดต่อผู้เชี่ยวชาญเพื่อขอคำแนะนำหรือความช่วยเหลือ

รูปภาพ - วงจรซ่อมแซมมัลติมิเตอร์ ut33c ที่ต้องทำด้วยตัวเอง

เป็นไปไม่ได้ที่จะจินตนาการถึงเดสก์ท็อปของช่างซ่อมที่ไม่มีเครื่องมัลติมิเตอร์แบบดิจิตอลราคาไม่แพง

บทความนี้จะกล่าวถึงอุปกรณ์ของมัลติมิเตอร์แบบดิจิตอลรุ่น 830 วงจร รวมถึงความผิดปกติที่พบบ่อยที่สุดและวิธีแก้ไข

ปัจจุบันมีการผลิตเครื่องมือวัดดิจิทัลจำนวนมากที่มีระดับความซับซ้อน ความน่าเชื่อถือ และคุณภาพที่แตกต่างกันออกไป พื้นฐานของมัลติมิเตอร์แบบดิจิตอลสมัยใหม่ทั้งหมดคือตัวแปลงแรงดันไฟฟ้าแบบแอนะล็อกเป็นดิจิทัล (ADC) ในตัว หนึ่งใน ADC ดังกล่าวชุดแรกๆ ที่เหมาะสำหรับการสร้างเครื่องมือวัดแบบพกพาราคาไม่แพง คือตัวแปลงที่ใช้ไมโครเซอร์กิต ICL7106 ที่ผลิตโดย MAXIM ด้วยเหตุนี้ ดิจิตอลมัลติมิเตอร์รุ่น 830 ซีรีส์ราคาประหยัดที่ประสบความสำเร็จหลายรุ่นจึงได้รับการพัฒนา เช่น M830B, M830, M832, M838 แทนที่จะเป็นตัวอักษร M DT สามารถยืนได้ ปัจจุบันอุปกรณ์ชุดนี้แพร่หลายและทำซ้ำมากที่สุดในโลก คุณสมบัติพื้นฐาน: การวัดแรงดันไฟตรงและไฟฟ้ากระแสสลับสูงสุด 1,000 V (ความต้านทานอินพุต 1 MΩ), การวัดกระแสตรงสูงสุด 10 A, การวัดความต้านทานสูงสุด 2 MΩ, การทดสอบไดโอดและทรานซิสเตอร์ นอกจากนี้ ในบางรุ่นยังมีโหมดของการเชื่อมต่อเสียงที่ต่อเนื่อง การวัดอุณหภูมิแบบมีและไม่มีเทอร์โมคัปเปิล การสร้างคดเคี้ยวด้วยความถี่ 50 ... 60 Hz หรือ 1 kHz ผู้ผลิตหลักของชุดมัลติมิเตอร์นี้คือ Precision Mastech Enterprises (ฮ่องกง)

พื้นฐานของมัลติมิเตอร์คือ ADC IC1 ประเภท 7106 (อะนาล็อกในประเทศที่ใกล้ที่สุดคือไมโครเซอร์กิต 572PV5) แผนภาพบล็อกของมันแสดงในรูปที่ 1 และพินสำหรับการดำเนินการในแพ็คเกจ DIP-40 แสดงในรูปที่ 2. เคอร์เนล 7106 อาจมีคำนำหน้าแตกต่างกันไปขึ้นอยู่กับผู้ผลิต: ICL7106, TC7106 เป็นต้น เมื่อเร็ว ๆ นี้มีการใช้ไมโครชิปที่ไม่ได้บรรจุหีบห่อ (ชิป DIE) มากขึ้นซึ่งคริสตัลจะถูกบัดกรีโดยตรงไปยังแผงวงจรพิมพ์

พิจารณาวงจรของมัลติมิเตอร์ M832 จาก Mastech (รูปที่ 3) พิน 1 ของ IC1 คือแหล่งจ่ายไฟแบตเตอรี่บวก 9V, พิน 26 เป็นค่าลบ ภายใน ADC มีแหล่งจ่ายแรงดันไฟฟ้าที่เสถียร 3 V อินพุตเชื่อมต่อกับพิน 1 ของ IC1 และเอาต์พุตเชื่อมต่อกับพิน 32 ขา 32 เชื่อมต่อกับพินทั่วไปของมัลติมิเตอร์และเชื่อมต่อแบบไฟฟ้ากับอินพุต COM ของเครื่องมือความต่างศักย์ระหว่างขั้ว 1 และ 32 อยู่ที่ประมาณ 3 V ในแรงดันไฟฟ้าที่หลากหลาย - จากค่าปกติถึง 6.5 V แรงดันไฟฟ้าที่เสถียรนี้จ่ายให้กับตัวแบ่งแบบปรับได้ R11, VR1, R13 และจากเอาต์พุตไปยังอินพุตของไมโครเซอร์กิต 36 ​​(ในโหมดการวัดกระแสและแรงดัน) ตัวแบ่งกำหนดศักยภาพ U ที่พิน 36 เท่ากับ 100 mV ตัวต้านทาน R12, R25 และ R26 ทำหน้าที่ป้องกัน ทรานซิสเตอร์ Q102 และตัวต้านทาน R109, R110 และ R111 มีหน้าที่ในการบ่งชี้แบตเตอรี่ต่ำ ตัวเก็บประจุ C7, C8 และตัวต้านทาน R19, R20 มีหน้าที่ในการแสดงจุดทศนิยมของจอแสดงผล

ช่วงแรงดันไฟฟ้าอินพุตที่ใช้งาน Umax ขึ้นอยู่กับระดับของแรงดันอ้างอิงที่ปรับได้โดยตรงที่พิน 36 และ 35 และ is

ความเสถียรและความแม่นยำของการอ่านจอแสดงผลขึ้นอยู่กับความเสถียรของค่าอ้างอิงแรงดันไฟฟ้านี้

การอ่านค่า N ขึ้นอยู่กับแรงดันไฟฟ้าขาเข้า U และแสดงเป็นตัวเลข

แผนภาพแบบง่ายของมัลติมิเตอร์ในโหมดการวัดแรงดันไฟฟ้าแสดงในรูปที่ 4.

เมื่อวัดแรงดันไฟฟ้ากระแสตรง สัญญาณอินพุตจะถูกนำไปใช้กับ R1…R6 จากเอาต์พุตซึ่งผ่านสวิตช์ [ตามแบบแผน 1-8/1…1-8/2) จะถูกป้อนไปยังตัวต้านทานป้องกัน R17 . ตัวต้านทานนี้ยังสร้างตัวกรองความถี่ต่ำผ่านร่วมกับตัวเก็บประจุ C3 เมื่อทำการวัดแรงดันไฟ AC ถัดไป สัญญาณจะถูกส่งไปยังอินพุตโดยตรงของชิป ADC พิน 31 ศักยภาพของเอาต์พุตทั่วไปที่สร้างโดยแหล่งจ่ายแรงดันไฟฟ้าที่เสถียร 3 V, พิน 32 จะถูกนำไปใช้กับอินพุตผกผันของไมโครเซอร์กิต

เมื่อวัดแรงดันไฟฟ้ากระแสสลับ จะแก้ไขด้วยวงจรเรียงกระแสครึ่งคลื่นบนไดโอด D1 ตัวต้านทาน R1 และ R2 ถูกเลือกในลักษณะที่เมื่อทำการวัดแรงดันไซน์ อุปกรณ์จะแสดงค่าที่ถูกต้อง การป้องกัน ADC มีให้โดยตัวต้านทาน R1…R6 และตัวต้านทาน R17

แผนภาพแบบง่ายของมัลติมิเตอร์ในโหมดการวัดปัจจุบันแสดงในรูปที่ 5.

ในโหมดการวัดกระแสตรง ตัวหลังจะไหลผ่านตัวต้านทาน R0, R8, R7 และ R6 ซึ่งจะเปลี่ยนไปตามช่วงการวัด แรงดันตกคร่อมตัวต้านทานเหล่านี้ผ่าน R17 จะถูกป้อนเข้ากับอินพุตของ ADC และผลลัพธ์จะแสดงขึ้น การป้องกัน ADC มีให้โดยไดโอด D2, D3 (อาจไม่ได้ติดตั้งในบางรุ่น) และฟิวส์ F.

แผนภาพแบบง่ายของมัลติมิเตอร์ในโหมดการวัดความต้านทานแสดงในรูปที่ 6. ในโหมดการวัดความต้านทาน ใช้การพึ่งพาที่แสดงโดยสูตร (2)

แผนภาพแสดงให้เห็นว่ากระแสเดียวกันจากแหล่งจ่ายแรงดัน +U ไหลผ่านตัวต้านทานอ้างอิงและตัวต้านทานที่วัดได้ R "(กระแสอินพุต 35, 36, 30 และ 31 มีน้อยมาก) และอัตราส่วนของ U และ U เท่ากับอัตราส่วน ของความต้านทานของตัวต้านทาน R" และ R ^ R1..R6 ใช้เป็นตัวต้านทานอ้างอิง R10 และ R103 ใช้เป็นตัวต้านทานการตั้งค่ากระแส การป้องกัน ADC มีให้โดยเทอร์มิสเตอร์ R18 (บางรุ่นราคาถูกใช้ตัวต้านทาน 1.2 kΩ ปกติ), Q1 ในโหมดซีเนอร์ไดโอด (ไม่ได้ติดตั้งเสมอ) และตัวต้านทาน R35, R16 และ R17 ที่อินพุต 36, 35 และ 31 ของ ADC

โหมดความต่อเนื่องวงจรความต่อเนื่องใช้ IC2 (LM358) ซึ่งมีแอมพลิฟายเออร์การทำงานสองตัว เครื่องกำเนิดเสียงประกอบอยู่บนแอมพลิฟายเออร์ตัวหนึ่ง ตัวเปรียบเทียบอีกตัวหนึ่ง เมื่อแรงดันไฟฟ้าที่อินพุตของตัวเปรียบเทียบ (พิน 6) น้อยกว่าเกณฑ์ แรงดันไฟต่ำจะถูกตั้งค่าที่เอาต์พุต (พิน 7) ซึ่งจะเปิดคีย์บนทรานซิสเตอร์ Q101 ส่งผลให้เกิดสัญญาณที่ได้ยิน เกณฑ์กำหนดโดยตัวแบ่ง R103, R104 การป้องกันมีให้โดยตัวต้านทาน R106 ที่อินพุตของตัวเปรียบเทียบ

ความผิดปกติทั้งหมดสามารถแบ่งออกเป็นข้อบกพร่องของโรงงาน (และสิ่งนี้เกิดขึ้น) และความเสียหายที่เกิดจากการกระทำที่ผิดพลาดของผู้ปฏิบัติงาน

รูปภาพ - วงจรซ่อมแซมมัลติมิเตอร์ ut33c ที่ต้องทำด้วยตัวเอง

เนื่องจากมัลติมิเตอร์ใช้การยึดแน่น การลัดวงจรขององค์ประกอบ การบัดกรีที่ไม่ดี และการแตกหักของตัวนำองค์ประกอบ โดยเฉพาะอย่างยิ่งที่ตั้งอยู่ตามขอบของบอร์ด การซ่อมแซมอุปกรณ์ที่ผิดพลาดควรเริ่มต้นด้วยการตรวจสอบแผงวงจรพิมพ์ด้วยสายตาข้อบกพร่องจากโรงงานที่พบบ่อยที่สุดของมัลติมิเตอร์ M832 แสดงอยู่ในตาราง

สามารถตรวจสอบความสมบูรณ์ของจอ LCD ได้โดยใช้แหล่งจ่ายแรงดันไฟฟ้ากระแสสลับที่มีความถี่ 50.60 Hz และแอมพลิจูดหลายโวลต์ คุณสามารถใช้มัลติมิเตอร์ M832 ซึ่งมีโหมดการสร้างแบบคดเคี้ยวได้ เนื่องจากเป็นแหล่งจ่ายแรงดันไฟฟ้ากระแสสลับ ในการทดสอบจอแสดงผล ให้วางบนพื้นผิวเรียบโดยยกหน้าจอขึ้น ต่อโพรบมัลติมิเตอร์ M832 หนึ่งตัวกับขั้วต่อทั่วไปของไฟแสดงสถานะ (แถวล่าง ขั้วต่อด้านซ้าย) และใช้โพรบมัลติมิเตอร์อีกตัวสลับกับขั้วต่อจอแสดงผลที่เหลือ หากคุณสามารถจุดระเบิดทุกส่วนของจอแสดงผลได้แสดงว่าใช้งานได้

ความผิดปกติข้างต้นอาจปรากฏขึ้นระหว่างการใช้งาน ควรสังเกตว่าในโหมดการวัดแรงดัน DC อุปกรณ์ไม่ค่อยล้มเหลวเพราะ ได้รับการปกป้องอย่างดีจากการโอเวอร์โหลดอินพุต ปัญหาหลักเกิดขึ้นเมื่อวัดกระแสหรือความต้านทาน

การซ่อมแซมอุปกรณ์ที่ผิดพลาดควรเริ่มต้นด้วยการตรวจสอบแรงดันไฟของแหล่งจ่ายและความสามารถในการทำงานของ ADC: แรงดันไฟเสถียรคือ 3 V และไม่มีการพังทลายระหว่างเอาต์พุตกำลังและเอาต์พุตทั่วไปของ ADC

ในโหมดการวัดปัจจุบันเมื่อใช้อินพุต V, Q และ mA แม้ว่าจะมีฟิวส์อยู่ก็ตาม อาจมีบางกรณีที่ฟิวส์ไหม้ช้ากว่าฟิวส์ไดโอด D2 หรือ D3 มีเวลาที่จะเจาะทะลุ หากมีการติดตั้งฟิวส์ในมัลติมิเตอร์ที่ไม่ตรงตามข้อกำหนดของคำแนะนำ ในกรณีนี้ความต้านทาน R5 ... R8 อาจไหม้และอาจไม่ปรากฏให้เห็นบนความต้านทาน ในกรณีแรก เมื่อมีเพียงไดโอดเท่านั้นที่ทะลุผ่าน ข้อบกพร่องจะปรากฏเฉพาะในโหมดการวัดปัจจุบันเท่านั้น: กระแสจะไหลผ่านอุปกรณ์ แต่หน้าจอจะแสดงค่าศูนย์ ในกรณีที่ตัวต้านทาน R5 หรือ R6 เกิดความเหนื่อยหน่ายในโหมดการวัดแรงดันไฟ อุปกรณ์จะประเมินค่าที่อ่านค่าสูงไปหรือแสดงการโอเวอร์โหลด เมื่อตัวต้านทานตัวใดตัวหนึ่งหรือทั้งสองตัวถูกเผาไหม้จนหมด อุปกรณ์จะไม่ถูกรีเซ็ตในโหมดการวัดแรงดันไฟฟ้า แต่เมื่อปิดอินพุต จอแสดงผลจะถูกตั้งค่าเป็นศูนย์ เมื่อตัวต้านทาน R7 หรือ R8 หมดในช่วงการวัดปัจจุบัน 20 mA และ 200 mA อุปกรณ์จะแสดงโอเวอร์โหลดและในช่วง 10 A - มีเพียงศูนย์เท่านั้น

ในโหมดการวัดความต้านทาน ความผิดปกติมักเกิดขึ้นในช่วง 200 โอห์ม และ 2000 โอห์ม ในกรณีนี้ เมื่อใช้แรงดันไฟฟ้ากับอินพุต ตัวต้านทาน R5, R6, R10, R18, ทรานซิสเตอร์ Q1 จะไหม้และตัวเก็บประจุ C6 จะขาด หากทรานซิสเตอร์ Q1 แตกอย่างสมบูรณ์ เมื่อวัดความต้านทาน อุปกรณ์จะแสดงค่าศูนย์ ด้วยการสลายตัวที่ไม่สมบูรณ์ของทรานซิสเตอร์ มัลติมิเตอร์ที่มีโพรบแบบเปิดจะแสดงความต้านทานของทรานซิสเตอร์นี้ ในโหมดการวัดแรงดันและกระแส ทรานซิสเตอร์จะลัดวงจรโดยสวิตช์ และไม่ส่งผลต่อการอ่านมัลติมิเตอร์ เมื่อตัวเก็บประจุ C6 เสีย มัลติมิเตอร์จะไม่วัดแรงดันไฟฟ้าในช่วง 20 V, 200 V และ 1000 V หรือประเมินค่าที่อ่านได้ในช่วงเหล่านี้ต่ำเกินไป

หากไม่มีข้อบ่งชี้บนจอแสดงผลเมื่อมีกระแสไฟไปยัง ADC หรือหากองค์ประกอบวงจรจำนวนมากถูกเผาไหม้ด้วยสายตา มีความเป็นไปได้สูงที่จะเกิดความเสียหายต่อ ADC ความสามารถในการซ่อมบำรุงของ ADC ได้รับการตรวจสอบโดยการตรวจสอบแรงดันไฟฟ้าของแหล่งจ่ายแรงดันไฟฟ้าที่เสถียรที่ 3 V ในทางปฏิบัติ ADC จะเผาไหม้ออกก็ต่อเมื่อไฟฟ้าแรงสูงถูกนำไปใช้กับอินพุต ซึ่งสูงกว่า 220 V มาก บ่อยครั้งมากที่รอยแตกปรากฏขึ้น สารประกอบ ADC แบบไร้กรอบการใช้กระแสไฟของไมโครเซอร์กิตเพิ่มขึ้นซึ่งนำไปสู่ความร้อนที่เห็นได้ชัดเจน .

เมื่อแรงดันไฟฟ้าสูงมากถูกนำไปใช้กับอินพุตของอุปกรณ์ในโหมดการวัดแรงดันไฟฟ้า อาจเกิดการพังทลายตามองค์ประกอบ (ตัวต้านทาน) และตามแผงวงจรพิมพ์ ในกรณีของโหมดการวัดแรงดันไฟฟ้า วงจรได้รับการป้องกันโดย ตัวแบ่งบนแนวต้าน R1.R6

สำหรับรุ่น DT ราคาถูก ชิ้นส่วนที่มีความยาวสามารถลัดไปยังหน้าจอที่อยู่ด้านหลังของอุปกรณ์ ซึ่งจะขัดขวางการทำงานของวงจร Mastech ไม่มีข้อบกพร่องดังกล่าว

แหล่งจ่ายแรงดันไฟฟ้าที่เสถียร 3 V ใน ADC สำหรับรุ่นจีนราคาถูกสามารถให้แรงดันไฟฟ้า 2.6.3.4 V ได้จริงและสำหรับอุปกรณ์บางอย่างจะหยุดทำงานที่แรงดันแบตเตอรี่ 8.5 V

รุ่น DT ใช้ ADC ที่มีคุณภาพต่ำและมีความละเอียดอ่อนมากต่อค่าสตริงของตัวรวม C4 และ R14 ในมัลติมิเตอร์ Mastech ADC คุณภาพสูงทำให้สามารถใช้องค์ประกอบที่มีระดับใกล้เคียงกันได้

บ่อยครั้งในมัลติมิเตอร์ DT ที่มีโพรบเปิดในโหมดการวัดความต้านทาน อุปกรณ์เข้าใกล้ค่าโอเวอร์โหลด (“1” บนจอแสดงผล) เป็นเวลานานมากหรือไม่ได้ตั้งค่าเลย คุณสามารถ "รักษา" ชิป ADC คุณภาพต่ำได้โดยการลดค่าความต้านทาน R14 จาก 300 เป็น 100 kOhm

เมื่อวัดความต้านทานในส่วนบนของช่วง อุปกรณ์จะ "เติม" ค่าที่อ่านได้ ตัวอย่างเช่น เมื่อวัดความต้านทานที่มีความต้านทาน 19.8 kOhm จะแสดง 19.3 kOhm มันถูก "รักษา" โดยแทนที่ตัวเก็บประจุ C4 ด้วยตัวเก็บประจุ 0.22 ... 0.27 uF

เนื่องจากบริษัทจีนราคาถูกใช้ ADC แบบไร้กรอบคุณภาพต่ำ จึงมักมีบางกรณีของเอาต์พุตที่เสียหาย ในขณะที่การระบุสาเหตุของการทำงานผิดพลาดเป็นเรื่องยากมาก และสามารถแสดงออกมาในรูปแบบต่างๆ ได้ ขึ้นอยู่กับเอาต์พุตที่เสียหาย ตัวอย่างเช่น เอาต์พุตตัวบ่งชี้ตัวใดตัวหนึ่งไม่ติดสว่าง เนื่องจากมัลติมิเตอร์ใช้จอแสดงผลที่มีสัญญาณคงที่ เพื่อระบุสาเหตุของการทำงานผิดพลาด จึงจำเป็นต้องตรวจสอบแรงดันไฟฟ้าที่เอาต์พุตที่สอดคล้องกันของชิป ADC จึงควรมีค่าประมาณ 0.5 V เมื่อเทียบกับเอาต์พุตทั่วไป หากเป็นศูนย์แสดงว่า ADC มีข้อบกพร่อง

มีความผิดปกติที่เกี่ยวข้องกับหน้าสัมผัสคุณภาพต่ำบนสวิตช์บิสกิต อุปกรณ์จะทำงานเมื่อกดบิสกิตเท่านั้น บริษัทที่ผลิตมัลติมิเตอร์ราคาถูกมักจะปิดรางใต้สวิตช์บิสกิตด้วยจาระบี ซึ่งเป็นสาเหตุที่ทำให้ออกซิไดซ์ได้อย่างรวดเร็ว บ่อยครั้งที่เส้นทางสกปรกด้วยบางสิ่งบางอย่าง มีการซ่อมแซมดังนี้: แผงวงจรพิมพ์จะถูกลบออกจากเคสและแทร็กสวิตช์จะถูกเช็ดด้วยแอลกอฮอล์ จากนั้นใช้ปิโตรเลียมเจลลี่ทางเทคนิคบางๆ ทุกอย่างอุปกรณ์ได้รับการซ่อมแซม

ด้วยอุปกรณ์ในซีรีส์ DT บางครั้งอาจเกิดการวัดแรงดันไฟสลับด้วยเครื่องหมายลบ นี่แสดงว่า D1 ได้รับการติดตั้งอย่างไม่ถูกต้อง ซึ่งมักเกิดจากการทำเครื่องหมายที่ไม่ถูกต้องบนตัวไดโอด

มันเกิดขึ้นที่ผู้ผลิตมัลติมิเตอร์ราคาถูกใส่แอมพลิฟายเออร์คุณภาพต่ำในวงจรกำเนิดเสียงจากนั้นเมื่อเปิดอุปกรณ์เสียงกริ่งจะดังขึ้น ข้อบกพร่องนี้ถูกกำจัดโดยการบัดกรีตัวเก็บประจุด้วยไฟฟ้าด้วยค่าเล็กน้อย 5 ไมโครฟารัดขนานกับวงจรไฟฟ้า หากสิ่งนี้ไม่รับประกันการทำงานที่เสถียรของเครื่องกำเนิดเสียง ก็จำเป็นต้องเปลี่ยนแอมพลิฟายเออร์ในการดำเนินงานด้วย LM358P

มักจะมีความรำคาญเช่นการรั่วไหลของแบตเตอรี่ อิเล็กโทรไลต์หยดเล็ก ๆ สามารถเช็ดด้วยแอลกอฮอล์ได้ แต่ถ้ากระดานถูกน้ำท่วมอย่างหนัก ผลลัพธ์ที่ดีสามารถได้รับโดยการล้างด้วยน้ำร้อนและสบู่ซักผ้า หลังจากถอดตัวบ่งชี้และยกเลิกการขายเสียงแหลมคมแล้ว โดยใช้แปรง เช่น แปรงสีฟัน คุณจำเป็นต้องถูกระดานทั้งสองด้านอย่างระมัดระวังแล้วล้างออกด้วยน้ำประปาที่ไหลผ่าน หลังจากการซักซ้ำ 2.3 ครั้ง บอร์ดจะแห้งและติดตั้งในกล่อง

ในอุปกรณ์ส่วนใหญ่ที่ผลิตเมื่อเร็วๆ นี้ จะใช้ ADC ที่ไม่ได้บรรจุหีบห่อ (ชิป DIE) คริสตัลถูกติดตั้งโดยตรงบนแผงวงจรพิมพ์และเติมด้วยเรซิน น่าเสียดายที่สิ่งนี้ลดความสามารถในการบำรุงรักษาอุปกรณ์ลงอย่างมากเพราะ เมื่อ ADC ล้มเหลวซึ่งเกิดขึ้นค่อนข้างบ่อยก็ยากที่จะเปลี่ยน อุปกรณ์ที่มี ADC ที่ไม่ได้บรรจุหีบห่อนั้นบางครั้งไวต่อแสงจ้า ตัวอย่างเช่น เมื่อทำงานใกล้กับโคมไฟตั้งโต๊ะ ข้อผิดพลาดในการวัดอาจเพิ่มขึ้น ความจริงก็คือตัวบ่งชี้และบอร์ดของอุปกรณ์มีความโปร่งใส และแสงที่ทะลุผ่านเข้าไปนั้นตกลงบนคริสตัล ADC ทำให้เกิดเอฟเฟกต์โฟโตอิเล็กทริก เพื่อขจัดข้อบกพร่องนี้ คุณต้องถอดบอร์ดออก และเมื่อถอดตัวบ่งชี้แล้ว ให้กาวตำแหน่งของคริสตัล ADC (สามารถมองเห็นได้ชัดเจนผ่านกระดาน) ด้วยกระดาษหนา

เมื่อซื้อมัลติมิเตอร์ DT คุณควรให้ความสนใจกับคุณภาพของกลไกของสวิตช์ อย่าลืมหมุนสวิตช์ของมัลติมิเตอร์หลาย ๆ ครั้งเพื่อให้แน่ใจว่าสวิตช์เกิดขึ้นอย่างชัดเจนและไม่มีการติดขัด: ข้อบกพร่องพลาสติกไม่สามารถซ่อมแซมได้

เซอร์เกย์ โบบิน. "การซ่อมแซมอุปกรณ์อิเล็กทรอนิกส์" №1, 2003

หรือเข้าสู่ระบบด้วยบริการเหล่านี้

  • รูปภาพ - วงจรซ่อมแซมมัลติมิเตอร์ ut33c ที่ต้องทำด้วยตัวเอง
  • รูปภาพ - วงจรซ่อมแซมมัลติมิเตอร์ ut33c ที่ต้องทำด้วยตัวเอง
  • รูปภาพ - วงจรซ่อมแซมมัลติมิเตอร์ ut33c ที่ต้องทำด้วยตัวเอง

  • รูปภาพ - วงจรซ่อมแซมมัลติมิเตอร์ ut33c ที่ต้องทำด้วยตัวเอง

รูปภาพ - วงจรซ่อมแซมมัลติมิเตอร์ ut33c ที่ต้องทำด้วยตัวเอง

โพสต์ของคุณต้องผ่านการกลั่นกรอง

ค่อนข้างอยู่ในอำนาจของผู้ใช้แต่ละคนที่คุ้นเคยกับพื้นฐานของอิเล็กทรอนิกส์และวิศวกรรมไฟฟ้าในการจัดระเบียบและซ่อมแซมมัลติมิเตอร์อย่างอิสระ แต่ก่อนที่จะดำเนินการซ่อมแซมดังกล่าว จำเป็นต้องพยายามหาลักษณะของความเสียหายที่เกิดขึ้นก่อน

การตรวจสอบความสามารถในการซ่อมบำรุงของอุปกรณ์ในขั้นตอนเริ่มต้นของการซ่อมแซมจะสะดวกที่สุดโดยการตรวจสอบวงจรอิเล็กทรอนิกส์ สำหรับกรณีนี้ กฎการแก้ไขปัญหาต่อไปนี้ได้รับการพัฒนา:

  • รูปภาพ - วงจรซ่อมแซมมัลติมิเตอร์ ut33c ที่ต้องทำด้วยตัวเองจำเป็นต้องตรวจสอบแผงวงจรพิมพ์ของมัลติมิเตอร์อย่างละเอียดซึ่งอาจมีข้อบกพร่องและข้อผิดพลาดจากโรงงานที่มองเห็นได้ชัดเจน
  • ควรให้ความสนใจเป็นพิเศษกับกางเกงขาสั้นที่ไม่ต้องการและการบัดกรีคุณภาพต่ำ รวมถึงข้อบกพร่องบนขั้วต่อตามขอบของบอร์ด (ในบริเวณที่เชื่อมต่อจอแสดงผล) สำหรับการซ่อมแซมคุณจะต้องใช้การบัดกรี
  • ข้อผิดพลาดจากโรงงานส่วนใหญ่มักปรากฏให้เห็นในความจริงที่ว่ามัลติมิเตอร์ไม่แสดงสิ่งที่ควรเป็นไปตามคำแนะนำ ดังนั้นจึงมีการตรวจสอบการแสดงผลก่อน

หากมัลติมิเตอร์อ่านค่าไม่ถูกต้องในทุกโหมดและ IC1 ร้อนขึ้น คุณต้องตรวจสอบขั้วต่อเพื่อตรวจสอบทรานซิสเตอร์ หากปิดสายยาว การซ่อมแซมจะประกอบด้วยการเปิดเท่านั้น

โดยรวมแล้วสามารถมีข้อผิดพลาดที่มองเห็นได้จำนวนเพียงพอ คุณสามารถทำความคุ้นเคยกับบางส่วนในตารางแล้วกำจัดทิ้งด้วยตัวเอง (ที่: ก่อนทำการซ่อมจำเป็นต้องศึกษาวงจรมัลติมิเตอร์ซึ่งปกติจะระบุไว้ในหนังสือเดินทาง

หากคุณต้องการตรวจสอบความสามารถในการซ่อมบำรุงและซ่อมแซมตัวบ่งชี้มัลติมิเตอร์ พวกเขามักจะหันไปใช้อุปกรณ์เพิ่มเติมที่สร้างสัญญาณที่มีความถี่และแอมพลิจูดที่เหมาะสม (50-60 Hz และสองสามโวลต์) ในกรณีที่ไม่มี คุณสามารถใช้มัลติมิเตอร์ประเภท M832 ที่มีฟังก์ชันสร้างพัลส์สี่เหลี่ยม (คดเคี้ยว)

ในการวินิจฉัยและซ่อมแซมจอแสดงผลมัลติมิเตอร์ จำเป็นต้องถอดบอร์ดการทำงานออกจากกล่องเครื่องมือและเลือกตำแหน่งที่สะดวกสำหรับการตรวจสอบหน้าสัมผัสตัวบ่งชี้ (หน้าจอขึ้น) หลังจากนั้น คุณควรเชื่อมต่อปลายโพรบหนึ่งตัวกับเอาต์พุตทั่วไปของตัวบ่งชี้ที่อยู่ระหว่างการทดสอบ (อยู่ที่แถวล่างสุด ซ้ายสุด) และแตะเอาต์พุตสัญญาณของจอแสดงผลโดยให้ปลายอีกด้านกลับกัน ในกรณีนี้ ทุกส่วนควรสว่างทีละส่วนตามการเดินสายของสายสัญญาณ ซึ่งควรอ่านแยกต่างหาก "การทำงาน" ปกติของส่วนที่ทดสอบในทุกโหมดแสดงว่าจอแสดงผลทำงาน

ข้อมูลเพิ่มเติม. ความผิดปกติที่ระบุมักปรากฏขึ้นระหว่างการทำงานของมัลติมิเตอร์แบบดิจิตอล ซึ่งชิ้นส่วนการวัดล้มเหลวและจำเป็นต้องได้รับการซ่อมแซมน้อยมาก (โดยมีเงื่อนไขว่าจะต้องปฏิบัติตามข้อกำหนดของคำแนะนำ)

ข้อสังเกตสุดท้ายเกี่ยวข้องกับค่าคงที่เท่านั้น ในการวัดซึ่งมัลติมิเตอร์ได้รับการปกป้องอย่างดีจากการโอเวอร์โหลด ปัญหาที่ร้ายแรงในการระบุสาเหตุของความล้มเหลวของอุปกรณ์มักเกิดขึ้นเมื่อพิจารณาความต้านทานของส่วนของวงจรและในโหมดความต่อเนื่อง

ในโหมดนี้ ตามกฎแล้ว ข้อผิดพลาดลักษณะเฉพาะจะปรากฏในช่วงการวัดสูงถึง 200 และสูงถึง 2,000 โอห์ม เมื่อแรงดันไฟฟ้าภายนอกเข้าสู่อินพุตตามกฎแล้วตัวต้านทานภายใต้การกำหนด R5, R6, R10, R18 และทรานซิสเตอร์ Q1 จะเผาไหม้ออก นอกจากนี้ตัวเก็บประจุ C6 มักจะพัง ผลที่ตามมาของการสัมผัสกับศักยภาพภายนอกมีดังนี้:

  1. รูปภาพ - วงจรซ่อมแซมมัลติมิเตอร์ ut33c ที่ต้องทำด้วยตัวเองด้วยไตรโอดที่ "หมดไฟ" อย่างสมบูรณ์ Q1 เมื่อพิจารณาความต้านทานมัลติมิเตอร์จะแสดงหนึ่งศูนย์
  2. ในกรณีที่ทรานซิสเตอร์ไม่สมบูรณ์ อุปกรณ์ปลายเปิดควรแสดงความต้านทานของการเปลี่ยนแปลง

บันทึก! ในโหมดการวัดอื่นๆ ทรานซิสเตอร์นี้จะเกิดการลัดวงจร ดังนั้นจึงไม่ส่งผลต่อการอ่านค่าของจอแสดงผล

เมื่อแบ่ง C6 มัลติมิเตอร์จะไม่ทำงานที่ขีด จำกัด การวัด 20, 200 และ 1,000 โวลต์ (ไม่รวมตัวเลือกในการประเมินค่าการอ่านที่ต่ำเกินไป)

หากมัลติมิเตอร์ส่งเสียงบี๊บอย่างต่อเนื่องระหว่างสัญญาณโทรศัพท์หรือเงียบ สาเหตุอาจเกิดจากการบัดกรีพินไมโครวงจร IC2 ที่มีคุณภาพต่ำ การซ่อมแซมประกอบด้วยการบัดกรีอย่างระมัดระวัง

การตรวจสอบและซ่อมแซมมัลติมิเตอร์ที่ไม่ทำงานซึ่งทำงานผิดปกติซึ่งไม่เกี่ยวข้องกับกรณีที่พิจารณาแล้ว ขอแนะนำให้เริ่มต้นด้วยการตรวจสอบแรงดันไฟฟ้า 3 โวลต์บนบัสจ่าย ADC ในกรณีนี้ ก่อนอื่น จำเป็นต้องตรวจสอบให้แน่ใจว่าไม่มีการแยกส่วนระหว่างขั้วจ่ายไฟและขั้วทั่วไปของคอนเวอร์เตอร์

การหายไปขององค์ประกอบบ่งชี้บนหน้าจอแสดงผลเมื่อมีแหล่งจ่ายแรงดันไฟไปยังตัวแปลงมีแนวโน้มมากที่สุดบ่งบอกถึงความเสียหายต่อวงจร ข้อสรุปเดียวกันนี้สามารถสรุปได้เมื่อองค์ประกอบวงจรจำนวนมากที่ตั้งอยู่ใกล้กับ ADC หมดไฟ

สำคัญ! ในทางปฏิบัติ โหนดนี้จะ "เผาไหม้" ต่อเมื่อไฟฟ้าแรงสูงเพียงพอ (มากกว่า 220 โวลต์) ชนกับอินพุต ซึ่งจะแสดงออกมาให้เห็นเป็นรอยร้าวในสารประกอบของโมดูล

ก่อนจะพูดถึงการซ่อมต้องเช็คให้ดีเสียก่อน วิธีง่ายๆ ในการทดสอบ ADC เพื่อความเหมาะสมสำหรับการทำงานต่อไปคือการทดสอบเอาท์พุตโดยใช้มัลติมิเตอร์ที่รู้จักดีในคลาสเดียวกัน โปรดทราบว่ากรณีที่มัลติมิเตอร์ที่สองแสดงผลการวัดไม่ถูกต้องไม่เหมาะสำหรับการตรวจสอบดังกล่าว

เมื่อเตรียมการใช้งานอุปกรณ์จะเปลี่ยนเป็นโหมด "เสียงเรียกเข้า" ของไดโอดและปลายสายวัดในฉนวนสีแดงจะเชื่อมต่อกับเอาต์พุตของไมโครเซอร์กิต "ลบ" หลังจากโพรบสีดำนี้ ขาสัญญาณแต่ละข้างจะถูกสัมผัสตามลำดับ เนื่องจากมีไดโอดป้องกันเชื่อมต่อในทิศทางตรงกันข้ามที่อินพุทของวงจร หลังจากใช้แรงดันไฟตรงจากมัลติมิเตอร์ของบริษัทอื่นแล้ว ไดโอดเหล่านั้นจึงควรเปิดขึ้น

ความจริงของการเปิดของพวกเขาถูกบันทึกไว้บนหน้าจอในรูปแบบของแรงดันตกที่จุดเชื่อมต่อขององค์ประกอบเซมิคอนดักเตอร์ วงจรจะถูกตรวจสอบในลักษณะเดียวกันเมื่อโพรบในฉนวนสีดำเชื่อมต่อกับพิน 1 (+ แหล่งจ่ายไฟ ADC) จากนั้นสัมผัสพินอื่นๆ ทั้งหมด ในกรณีนี้ ค่าที่อ่านได้บนหน้าจอแสดงผลควรจะเหมือนกับในกรณีแรก